Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease

Author(s): Cinzia Severini*, Christian Barbato, Maria Grazia Di Certo, Francesca Gabanella, Carla Petrella, Arianna Di Stadio, Marco de Vincentiis, Antonella Polimeni, Massimo Ralli and Antonio Greco

Volume 19, Issue 4, 2021

Published on: 21 June, 2020

Page: [498 - 512] Pages: 15

DOI: 10.2174/1570159X18666200621204546

Price: $65

Abstract

Alzheimer’s disease (AD), recognized as the most common neurodegenerative disorder, is clinically characterized by the presence of extracellular beta-amyloid (Aβ) plaques and by intracellular neurofibrillary tau tangles, accompanied by glial activation and neuroinflammation. Increasing evidence suggests that self-misfolded proteins stimulate an immune response mediated by glial cells, inducing the release of inflammatory mediators and the recruitment of peripheral macrophages into the brain, which in turn aggravate AD pathology.

The present review aims to update the current knowledge on the role of autoimmunity and neuroinflammation in the pathogenesis of the disease, indicating a new target for therapeutic intervention. We mainly focused on the NLRP3 microglial inflammasome as a critical factor in stimulating innate immune responses, thus sustaining chronic inflammation. Additionally, we discussed the involvement of the NLRP3 inflammasome in the gut-brain axis. Direct targeting of the NLRP3 inflammasome and the associated receptors could be a potential pharmacological strategy since its inhibition would selectively reduce AD neuroinflammation.

Keywords: Alzheimer's disease, autoimmunity, neuroinflammation, microglial NLRP3 inflammasome, microbiota-gutinflammasome- brain-axis, therapeutic targets.

Graphical Abstract
[1]
Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[2]
Alzheimer, A.; Förstl, H.; Levy, R. On certain peculiar diseases of old age. Hist. Psychiatry, 1991, 2(5 Pt 1), 71-101.
[http://dx.doi.org/10.1177/0957154X9100200505] [PMID: 11622845]
[3]
Dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; Dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s Disease: A Review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2018, 25(26), 3141-3159.
[http://dx.doi.org/10.2174/0929867323666161213101126] [PMID: 30191777]
[4]
Ferretti, M.T.; Iulita, M.F.; Cavedo, E.; Chiesa, P.A.; Schumacher Dimech, A.; Santuccione Chadha, A.; Baracchi, F.; Girouard, H.; Misoch, S.; Giacobini, E.; Depypere, H.; Hampel, H. Women’s Brain Project and the Alzheimer Precision Medicine Initiative. Nat. Rev. Neurol., 2018, 14(8), 457-469.
[http://dx.doi.org/10.1038/s41582-018-0032-9] [PMID: 29985474]
[5]
Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Mowrey, W.; Landau, S.; Maki, P.M. Alzheimer’s Disease Neuroimaging Initiative. Better verbal memory in women than men in MCI despite similar levels of hippocampal atrophy. Neurology, 2016, 86(15), 1368-1376.
[http://dx.doi.org/10.1212/WNL.0000000000002570] [PMID: 26984945]
[6]
Pradier, C.; Sakarovitch, C.; Le Duff, F.; Layese, R.; Metelkina, A.; Anthony, S.; Tifratene, K.; Robert, P. The mini mental state examination at the time of Alzheimer’s disease and related disorders diagnosis, according to age, education, gender and place of residence: a cross-sectional study among the French National Alzheimer database. PLoS One, 2014, 9(8), e103630.
[http://dx.doi.org/10.1371/journal.pone.0103630] [PMID: 25093735]
[7]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[8]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[9]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[10]
Bateman, R.J.; Aisen, P.S.; De Strooper, B.; Fox, N.C.; Lemere, C.A.; Ringman, J.M.; Salloway, S.; Sperling, R.A.; Windisch, M.; Xiong, C. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(1), 1.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[11]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1, 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[12]
Tosto, G.; Reitz, C. Genome-wide association studies in Alzheimer’s disease: a review. Curr. Neurol. Neurosci. Rep., 2013, 13(10), 381.
[http://dx.doi.org/10.1007/s11910-013-0381-0] [PMID: 23954969]
[13]
Mahley, R.W.; Huang, Y. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron, 2012, 76(5), 871-885.
[http://dx.doi.org/10.1016/j.neuron.2012.11.020] [PMID: 23217737]
[14]
Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; Goate, A.M.; Bales, K.R.; Paul, S.M.; Bateman, R.J.; Holtzman, D.M. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med., 2011, 3(89), 89ra57.
[http://dx.doi.org/10.1126/scitranslmed.3002156] [PMID: 21715678]
[15]
Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J.F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry, 2011, 16(9), 903-907.
[http://dx.doi.org/10.1038/mp.2011.52] [PMID: 21556001]
[16]
Sardi, F.; Fassina, L.; Venturini, L.; Inguscio, M.; Guerriero, F.; Rolfo, E.; Ricevuti, G. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun. Rev., 2011, 11(2), 149-153.
[http://dx.doi.org/10.1016/j.autrev.2011.09.005] [PMID: 21996556]
[17]
VanItallie, T.B. Alzheimer’s disease: Innate immunity gone awry? Metabolism, 2017, 69S, S41-S49.
[http://dx.doi.org/10.1016/j.metabol.2017.01.014] [PMID: 28129888]
[18]
Arshavsky, Y.I. Alzheimer’s disease: from amyloid to autoimmune hypothesis. Neuroscientist, 2020, 26(5-6), 455-470.1073858420908189
[http://dx.doi.org/10.1177/1073858420908189] [PMID: 32111138]
[19]
Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.; Younkin, S.; Hazrati, L.; Collinge, J.; Pocock, J.; Lashley, T.; Williams, J.; Lambert, J.C.; Amouyel, P.; Goate, A.; Rademakers, R.; Morgan, K.; Powell, J.; St George-Hyslop, P.; Singleton, A.; Hardy, J. Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 117-127.
[http://dx.doi.org/10.1056/NEJMoa1211851] [PMID: 23150934]
[20]
Bradshaw, E.M.; Chibnik, L.B.; Keenan, B.T.; Ottoboni, L.; Raj, T.; Tang, A.; Rosenkrantz, L.L.; Imboywa, S.; Lee, M.; Von Korff, A.; Morris, M.C.; Evans, D.A.; Johnson, K.; Sperling, R.A.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L. Alzheimer Disease Neuroimaging Initiative. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci., 2013, 16(7), 848-850.
[http://dx.doi.org/10.1038/nn.3435] [PMID: 23708142]
[21]
McGeer, P.L.; McGeer, E.G. Innate immunity, local inflammation, and degenerative disease. Sci. SAGE KE, 2002, 2002(29), re3.
[http://dx.doi.org/10.1126/sageke.2002.29.re3] [PMID: 14602998]
[22]
Wu, J.; Li, L. Autoantibodies in Alzheimer’s disease: potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res., 2016, 30(5), 361-372.
[PMID: 27476881]
[23]
Kellner, A.; Matschke, J.; Bernreuther, C.; Moch, H.; Ferrer, I.; Glatzel, M. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann. Neurol., 2009, 65(1), 24-31.
[http://dx.doi.org/10.1002/ana.21475] [PMID: 19194878]
[24]
Britschgi, M.; Olin, C.E.; Johns, H.T.; Takeda-Uchimura, Y.; LeMieux, M.C.; Rufibach, K.; Rajadas, J.; Zhang, H.; Tomooka, B.; Robinson, W.H.; Clark, C.M.; Fagan, A.M.; Galasko, D.R.; Holtzman, D.M.; Jutel, M.; Kaye, J.A.; Lemere, C.A.; Leszek, J.; Li, G.; Peskind, E.R.; Quinn, J.F.; Yesavage, J.A.; Ghiso, J.A.; Wyss-Coray, T. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12145-12150.
[http://dx.doi.org/10.1073/pnas.0904866106] [PMID: 19581601]
[25]
Bach, J.P.; Dodel, R. Naturally occurring autoantibodies against β-Amyloid. Adv. Exp. Med. Biol., 2012, 750, 91-99.
[http://dx.doi.org/10.1007/978-1-4614-3461-0_7] [PMID: 22903668]
[26]
Hock, C.; Konietzko, U.; Streffer, J.R.; Tracy, J.; Signorell, A.; Müller-Tillmanns, B.; Lemke, U.; Henke, K.; Moritz, E.; Garcia, E.; Wollmer, M.A.; Umbricht, D.; de Quervain, D.J.; Hofmann, M.; Maddalena, A.; Papassotiropoulos, A.; Nitsch, R.M. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 2003, 38(4), 547-554.
[http://dx.doi.org/10.1016/S0896-6273(03)00294-0] [PMID: 12765607]
[27]
Dodel, R.C.; Du, Y.; Depboylu, C.; Hampel, H.; Frölich, L.; Haag, A.; Hemmeter, U.; Paulsen, S.; Teipel, S.J.; Brettschneider, S.; Spottke, A.; Nölker, C.; Möller, H.J.; Wei, X.; Farlow, M.; Sommer, N.; Oertel, W.H. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2004, 75(10), 1472-1474.
[http://dx.doi.org/10.1136/jnnp.2003.033399] [PMID: 15377700]
[28]
Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; Zotova, E.; Nicoll, J.A. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 2008, 372(9634), 216-223.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[29]
Town, T. Alzheimer’s Disease Beyond Abeta. Expert Rev. Neurother., 2010, 10(5), 671-675.
[http://dx.doi.org/10.1586/ern.10.50] [PMID: 20429127]
[30]
Yokoyama, J.S.; Wang, Y.; Schork, A.J.; Thompson, W.K.; Karch, C.M.; Cruchaga, C.; McEvoy, L.K.; Witoelar, A.; Chen, C.H.; Holland, D.; Brewer, J.B.; Franke, A.; Dillon, W.P.; Wilson, D.M.; Mukherjee, P.; Hess, C.P.; Miller, Z.; Bonham, L.W.; Shen, J.; Rabinovici, G.D.; Rosen, H.J.; Miller, B.L.; Hyman, B.T.; Schellenberg, G.D.; Karlsen, T.H.; Andreassen, O.A.; Dale, A.M.; Desikan, R.S. Alzheimer’s Disease Neuroimaging Initiative. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol., 2016, 73(6), 691-697.
[http://dx.doi.org/10.1001/jamaneurol.2016.0150] [PMID: 27088644]
[31]
Zotova, E.; Nicoll, J.A.; Kalaria, R.; Holmes, C.; Boche, D. Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res. Ther., 2010, 2(1), 1.
[http://dx.doi.org/10.1186/alzrt24] [PMID: 20122289]
[32]
Tanaka, J.; Nakamura, K.; Takeda, M.; Tada, K.; Suzuki, H.; Morita, H.; Okado, T.; Hariguchi, S.; Nishimura, T. Enzyme-linked immunosorbent assay for human autoantibody to glial fibrillary acidic protein: higher titer of the antibody is detected in serum of patients with Alzheimer’s disease. Acta Neurol. Scand., 1989, 80(6), 554-560.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb03926.x] [PMID: 2618583]
[33]
Mecocci, P.; Parnetti, L.; Romano, G.; Scarelli, A.; Chionne, F.; Cecchetti, R.; Polidori, M.C.; Palumbo, B.; Cherubini, A.; Senin, U. Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer’s disease and vascular dementia. J. Neuroimmunol., 1995, 57(1-2), 165-170.
[http://dx.doi.org/10.1016/0165-5728(94)00180-V] [PMID: 7706432]
[34]
Gruden, M.A.; Davidova, T.B.; Malisauskas, M.; Sewell, R.D.; Voskresenskaya, N.I.; Wilhelm, K.; Elistratova, E.I.; Sherstnev, V.V.; Morozova-Roche, L.A. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25-35)) oligomers, S100b and neurotransmitters. J. Neuroimmunol., 2007, 186(1-2), 181-192.
[http://dx.doi.org/10.1016/j.jneuroim.2007.03.023] [PMID: 17477976]
[35]
Steiner, J.; Bogerts, B.; Schroeter, M.L.; Bernstein, H.G. S100B protein in neurodegenerative disorders. Clin. Chem. Lab. Med., 2011, 49(3), 409-424.
[http://dx.doi.org/10.1515/CCLM.2011.083] [PMID: 21303299]
[36]
Petzold, A.; Keir, G.; Lim, D.; Smith, M.; Thompson, E.J. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res. Bull., 2003, 61(3), 281-285.
[http://dx.doi.org/10.1016/S0361-9230(03)00091-1] [PMID: 12909298]
[37]
McRae, A.; Martins, R.N.; Fonte, J.; Kraftsik, R.; Hirt, L.; Miklossy, J. Cerebrospinal fluid antimicroglial antibodies in Alzheimer disease: a putative marker of an ongoing inflammatory process. Exp. Gerontol., 2007, 42(4), 355-363.
[http://dx.doi.org/10.1016/j.exger.2006.10.015] [PMID: 17140756]
[38]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[39]
Widmann, C.N.; Heneka, M.T. Long-term cerebral consequences of sepsis. Lancet Neurol., 2014, 13(6), 630-636.
[http://dx.doi.org/10.1016/S1474-4422(14)70017-1] [PMID: 24849863]
[40]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[41]
Mrak, R.E. Microglia in Alzheimer brain: a neuropathological perspective. Int. J. Alzheimers Dis., 2012, 2012, 165021.
[http://dx.doi.org/10.1155/2012/165021] [PMID: 22655212]
[42]
Tang, Y.; Le, W. Differential roles of M1, and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[43]
Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[44]
Di Stadio, A.; Angelini, C. Microglia polarization by mitochondrial metabolism modulation: A therapeutic opportunity in neurodegenerative diseases. Mitochondrion, 2019, 46, 334-336.
[http://dx.doi.org/10.1016/j.mito.2018.09.003] [PMID: 30243831]
[45]
Baik, S.H.; Kang, S.; Son, S.M.; Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia, 2016, 64(12), 2274-2290.
[http://dx.doi.org/10.1002/glia.23074] [PMID: 27658617]
[46]
Simard, A.R.; Soulet, D.; Gowing, G.; Julien, J.P.; Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 2006, 49(4), 489-502.
[http://dx.doi.org/10.1016/j.neuron.2006.01.022] [PMID: 16476660]
[47]
Meda, L.; Cassatella, M.A.; Szendrei, G.I.; Otvos, L., Jr; Baron, P.; Villalba, M.; Ferrari, D.; Rossi, F. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995, 374(6523), 647-650.
[http://dx.doi.org/10.1038/374647a0] [PMID: 7715705]
[48]
Sheng, J.G.; Zhou, X.Q.; Mrak, R.E.; Griffin, W.S.T. Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J. Neuropathol. Exp. Neurol., 1998, 57(7), 714-717.
[http://dx.doi.org/10.1097/00005072-199807000-00008] [PMID: 9690675]
[49]
Jay, T.R.; Miller, C.M.; Cheng, P.J.; Graham, L.C.; Bemiller, S.; Broihier, M.L.; Xu, G.; Margevicius, D.; Karlo, J.C.; Sousa, G.L.; Cotleur, A.C.; Butovsky, O.; Bekris, L.; Staugaitis, S.M.; Leverenz, J.B.; Pimplikar, S.W.; Landreth, G.E.; Howell, G.R.; Ransohoff, R.M.; Lamb, B.T. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J. Exp. Med., 2015, 212(3), 287-295.
[http://dx.doi.org/10.1084/jem.20142322] [PMID: 25732305]
[50]
Lang, Y.; Chu, F.; Shen, D.; Zhang, W.; Zheng, C.; Zhu, J.; Cui, L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediators Inflamm., 2018, 2018, 1549549.
[http://dx.doi.org/10.1155/2018/1549549] [PMID: 29849483]
[51]
Di Virgilio, F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol. Rev., 2013, 65(3), 872-905.
[http://dx.doi.org/10.1124/pr.112.006171] [PMID: 23592611]
[52]
Lamkanfi, M.; Dixit, V.M. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5), 1013-1022.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[53]
Abbott, A. Is ‘friendly fire’ in the brain provoking Alzheimer’s disease? Nature, 2018, 556(7702), 426-428.
[http://dx.doi.org/10.1038/d41586-018-04930-7] [PMID: 29691517]
[54]
Hanisch, U.K. Microglia as a source and target of cytokines. Glia, 2002, 40(2), 140-155.
[http://dx.doi.org/10.1002/glia.10161] [PMID: 12379902]
[55]
Minkiewicz, J. de Rivero, Vaccari, J.P.; Keane, R.W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61(7), 1113-1121.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[56]
Salminen, A.; Ojala, J.; Kauppinen, A.; Kaarniranta, K.; Suuronen, T. Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol., 2009, 87(3), 181-194.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.001] [PMID: 19388207]
[57]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[58]
Tan, M.S.; Tan, L.; Jiang, T.; Zhu, X.C.; Wang, H.F.; Jia, C.D.; Yu, J.T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis., 2014, 5(8), e1382.
[http://dx.doi.org/10.1038/cddis.2014.348] [PMID: 25144717]
[59]
Liu, L.; Chan, C. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s Disease. Neurobiol. Aging, 2014, 35(2), 309-321.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.016] [PMID: 24054992]
[60]
Wu, P.J.; Hung, Y.F.; Liu, H.Y.; Hsueh, Y.P. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an alzheimer disease mouse model. Neuroimmunomodulation, 2017, 24(1), 29-39.
[http://dx.doi.org/10.1159/000477092] [PMID: 28618410]
[61]
Ozaki, E.; Campbell, M.; Doyle, S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res., 2015, 8, 15-27.
[PMID: 25653548]
[62]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[63]
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia, 2013, 61(1), 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[64]
Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature, 2014, 509(7500), 310-317.
[http://dx.doi.org/10.1038/nature13085] [PMID: 24828189]
[65]
Minoretti, P.; Gazzaruso, C.; Vito, C.D.; Emanuele, E.; Bianchi, M.; Coen, E.; Reino, M.; Geroldi, D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett., 2006, 391(3), 147-149.
[http://dx.doi.org/10.1016/j.neulet.2005.08.047] [PMID: 16157451]
[66]
Burnstock, G.; Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol., 1985, 16(5), 433-440.
[http://dx.doi.org/10.1016/0306-3623(85)90001-1] [PMID: 2996968]
[67]
Weisman, G.A.; Camden, J.M.; Peterson, T.S.; Ajit, D.; Woods, L.T.; Erb, L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y2 receptor interactions in neuroinflammation. Mol. Neurobiol., 2012, 46(1), 96-113.
[http://dx.doi.org/10.1007/s12035-012-8263-z] [PMID: 22467178]
[68]
Severini, C.; Passeri, P.P.; Ciotti, M.; Florenzano, F.; Possenti, R.; Zona, C.; Di Matteo, A.; Guglielmotti, A.; Calissano, P.; Pachter, J.; Mercanti, D. Bindarit, inhibitor of CCL2 synthesis, protects neurons against amyloid-β-induced toxicity. J. Alzheimers Dis., 2014, 38(2), 281-293.
[http://dx.doi.org/10.3233/JAD-131070] [PMID: 23948942]
[69]
Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol., 2018, 151, 234-244.
[http://dx.doi.org/10.1016/j.bcp.2017.12.021] [PMID: 29288626]
[70]
Martínez-Frailes, C.; Di Lauro, C.; Bianchi, C.; de Diego-García, L.; Sebastián-Serrano, Á.; Boscá, L.; Díaz-Hernández, M. Amyloid peptide induced neuroinflammation increases the p2x7 receptor expression in microglial cells, impacting on its functionality. Front. Cell. Neurosci., 2019, 13, 143.
[http://dx.doi.org/10.3389/fncel.2019.00143] [PMID: 31031598]
[71]
Diaz-Hernandez, J.I.; Gomez-Villafuertes, R.; León-Otegui, M.; Hontecillas-Prieto, L.; Del Puerto, A.; Trejo, J.L.; Lucas, J.J.; Garrido, J.J.; Gualix, J.; Miras-Portugal, M.T.; Diaz-Hernandez, M. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3β and secretases. Neurobiol. Aging, 2012, 33(8), 1816-1828.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.040] [PMID: 22048123]
[72]
McLarnon, J.G.; Ryu, J.K.; Walker, D.G.; Choi, H.B. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neurol., 2006, 65(11), 1090-1097.
[http://dx.doi.org/10.1097/01.jnen.0000240470.97295.d3] [PMID: 17086106]
[73]
Kim, S.Y.; Moon, J.H.; Lee, H.G.; Kim, S.U.; Lee, Y.B. ATP released from β-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp. Mol. Med., 2007, 39(6), 820-827.
[http://dx.doi.org/10.1038/emm.2007.89] [PMID: 18160853]
[74]
Sanz, J.M.; Chiozzi, P.; Ferrari, D.; Colaianna, M.; Idzko, M.; Falzoni, S.; Fellin, R.; Trabace, L.; Di Virgilio, F. Activation of microglia by amyloid beta requires P2X7 receptor expression. J. Immunol., 2009, 182(7), 4378-4385.
[http://dx.doi.org/10.4049/jimmunol.0803612] [PMID: 19299738]
[75]
Pelegrin, P.; Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J., 2006, 25(21), 5071-5082.
[http://dx.doi.org/10.1038/sj.emboj.7601378] [PMID: 17036048]
[76]
Yang, C.S.; Kim, J.J.; Kim, T.S.; Lee, P.Y.; Kim, S.Y.; Lee, H.M.; Shin, D.M.; Nguyen, L.T.; Lee, M.S.; Jin, H.S.; Kim, K.K.; Lee, C.H.; Kim, M.H.; Park, S.G.; Kim, J.M.; Choi, H.S.; Jo, E.K. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat. Commun., 2015, 6, 6115.
[http://dx.doi.org/10.1038/ncomms7115] [PMID: 25655831]
[77]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[78]
Saresella, M.; La Rosa, F.; Piancone, F.; Zoppis, M.; Marventano, I.; Calabrese, E.; Rainone, V.; Nemni, R.; Mancuso, R.; Clerici, M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener., 2016, 11, 23.
[http://dx.doi.org/10.1186/s13024-016-0088-1] [PMID: 26939933]
[79]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Wang, H.F.; Zhang, W.; Wang, Y.L.; Jiang, W.; Tan, L. NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han Chinese. J. Neuroimmunol., 2013, 265(1-2), 91-95.
[http://dx.doi.org/10.1016/j.jneuroim.2013.10.002] [PMID: 24144834]
[80]
Fontalba, A.; Gutiérrez, O.; Llorca, J.; Mateo, I.; Berciano, J.; Fernández-Luna, J.L.; Combarros, O. Deficiency of CARD8 is associated with increased Alzheimer’s disease risk in women. Dement. Geriatr. Cogn. Disord., 2008, 26(3), 247-250.
[http://dx.doi.org/10.1159/000160956] [PMID: 18841008]
[81]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[82]
Dempsey, C.; Rubio Araiz, A.; Bryson, K.J.; Finucane, O.; Larkin, C.; Mills, E.L.; Robertson, A.A.B.; Cooper, M.A.; O’Neill, L.A.J.; Lynch, M.A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun., 2017, 61, 306-316.
[http://dx.doi.org/10.1016/j.bbi.2016.12.014] [PMID: 28003153]
[83]
Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; Griep, A.; Gelpi, E.; Beilharz, M.; Riedel, D.; Golenbock, D.T.; Geyer, M.; Walter, J.; Latz, E.; Heneka, M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017, 552(7685), 355-361.
[http://dx.doi.org/10.1038/nature25158] [PMID: 29293211]
[84]
Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; Griep, A.; Santarelli, F.; Brosseron, F.; Opitz, S.; Stunden, J.; Merten, M.; Kayed, R.; Golenbock, D.T.; Blum, D.; Latz, E.; Buée, L.; Heneka, M.T. NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575(7784), 669-673.
[http://dx.doi.org/10.1038/s41586-019-1769-z] [PMID: 31748742]
[85]
Tejera, D.; Mercan, D.; Sanchez-Caro, J.M.; Hanan, M.; Greenberg, D.; Soreq, H.; Latz, E.; Golenbock, D.; Heneka, M.T. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J., 2019, 38(17), e101064.
[http://dx.doi.org/10.15252/embj.2018101064] [PMID: 31359456]
[86]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[87]
Alkasir, R.; Li, J.; Li, X.; Jin, M.; Zhu, B. Human gut microbiota: the links with dementia development. Protein Cell, 2017, 8(2), 90-102.
[http://dx.doi.org/10.1007/s13238-016-0338-6] [PMID: 27866330]
[88]
Pellegrini, C.; Antonioli, L.; Colucci, R.; Blandizzi, C.; Fornai, M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol., 2018, 136(3), 345-361.
[http://dx.doi.org/10.1007/s00401-018-1856-5] [PMID: 29797112]
[89]
Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol., 2014, 14, 189.
[http://dx.doi.org/10.1186/s12876-014-0189-7] [PMID: 25407511]
[90]
Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry, 2016, 21(6), 738-748.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[91]
Bonfli, L. Cecarini, V.; Berardi, S.; Scarpona, S.; Suchodolski, J.S.; Nasuti, C.; Fiorini, D.; Boarelli. M.C.; Rossi, G.; Eleuteri, A.M. Microbiota modulation counteracts Alzheimer’s disease progression infuencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep., 2017, 7(1), 2426.
[http://dx.doi.org/10.1038/s41598-017-02587-2] [PMID: 28546539]
[92]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[93]
Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[94]
Harach, T.; Marungruang, N.; Dutilleul, N.; Cheatham, V.; Mc Coy, K.D.; Neher, J.J.; Jucker, M.; Fåk, F.; Lasser, T.; Bolmont, T. Reduction of Alzheimer’s disease beta-amyloid pathology in the absence of gut microbiota Cornell University Library arXiv:1509.02273, 2015.
[95]
Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schäfer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[96]
Pellegrini, C.; Antonioli, L.; Calderone, V.; Colucci, R.; Fornai, M.; Blandizzi, C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog. Neurobiol., 2020, 191, 101806.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101806] [PMID: 32473843]
[97]
Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev., 2016, 74(10), 624-634.
[http://dx.doi.org/10.1093/nutrit/nuw023] [PMID: 27634977]
[98]
Zhao, Y.; Lukiw, W.J. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci., 2015, 1(7), e138.
[PMID: 26097896]
[99]
Shen, H.; Guan, Q.; Zhang, X.; Yuan, C.; Tan, Z.; Zhai, L.; Hao, Y.; Gu, Y.; Han, C. New mechanism of neuroinflammation in Alzheimer’s disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 100, 109884.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109884] [PMID: 32032696]
[100]
Petersen, R.C. How early can we diagnose Alzheimer disease (and is it sufficient)? The 2017 Wartenberg lecture. Neurology, 2018, 91(9), 395-402.
[http://dx.doi.org/10.1212/WNL.0000000000006088] [PMID: 30089620]
[101]
Fonseca, L.M.; Padilla, C.; Jones, E.; Neale, N.; Haddad, G.G.; Mattar, G.P.; Barros, E.; Clare, I.C.H.; Busatto, G.F.; Bottino, C.M.C.; Hoexter, M.Q.; Holland, A.J.; Zaman, S. Amnestic and non-amnestic symptoms of dementia: An international study of Alzheimer’s disease in people with Down’s syndrome. Int. J. Geriatr. Psychiatry, 2020, 35(6), 650-661.
[http://dx.doi.org/10.1002/gps.5283] [PMID: 32100307]
[102]
Chhatwal, J.P.; Schultz, A.P.; Johnson, K.A.; Hedden, T.; Jaimes, S.; Benzinger, T.L.S.; Jack, C., Jr; Ances, B.M.; Ringman, J.M.; Marcus, D.S.; Ghetti, B.; Farlow, M.R.; Danek, A.; Levin, J.; Yakushev, I.; Laske, C.; Koeppe, R.A.; Galasko, D.R.; Xiong, C.; Masters, C.L.; Schofield, P.R.; Kinnunen, K.M.; Salloway, S.; Martins, R.N.; McDade, E.; Cairns, N.J.; Buckles, V.D.; Morris, J.C.; Bateman, R.; Sperling, R.A. Dominantly Inherited Alzheimer Network. Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain, 2018, 141(5), 1486-1500.
[http://dx.doi.org/10.1093/brain/awy053] [PMID: 29522171]
[103]
Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[104]
Schott, J.M. The neurology of ageing: what is normal? Pract. Neurol., 2017, 17(3), 172-182.
[http://dx.doi.org/10.1136/practneurol-2016-001566] [PMID: 28455389]
[105]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed; American Psychiatric Publishing: Washington, DC, 2013.
[106]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[107]
Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res., 1975, 12(3), 189-198.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[108]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R. Contributors. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[109]
Clark, C.M.; Pontecorvo, M.J.; Beach, T.G.; Bedell, B.J.; Coleman, R.E.; Doraiswamy, P.M.; Fleisher, A.S.; Reiman, E.M.; Sabbagh, M.N.; Sadowsky, C.H.; Schneider, J.A.; Arora, A.; Carpenter, A.P.; Flitter, M.L.; Joshi, A.D.; Krautkramer, M.J.; Lu, M.; Mintun, M.A.; Skovronsky, D.M. AV-45-A16 Study Group. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol., 2012, 11(8), 669-678.
[http://dx.doi.org/10.1016/S1474-4422(12)70142-4] [PMID: 22749065]
[110]
Chien, D.T.; Szardenings, A.K.; Bahri, S.; Walsh, J.C.; Mu, F.; Xia, C.; Shankle, W.R.; Lerner, A.J.; Su, M.Y.; Elizarov, A.; Kolb, H.C. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J. Alzheimers Dis., 2014, 38(1), 171-184.
[http://dx.doi.org/10.3233/JAD-130098] [PMID: 23948934]
[111]
Wirth, M.; Madison, C.M.; Rabinovici, G.D.; Oh, H.; Landau, S.M.; Jagust, W.J. Alzheimer’s disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid in cognitively normal older individuals. J. Neurosci., 2013, 33(13), 5553-5563.
[http://dx.doi.org/10.1523/JNEUROSCI.4409-12.2013] [PMID: 23536070]
[112]
Crismon, M.L. Tacrine: first drug approved for Alzheimer’s disease. Ann. Pharmacother., 1994, 28(6), 744-751.
[http://dx.doi.org/10.1177/106002809402800612] [PMID: 7919566]
[113]
Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ, 1999, 318(7184), 633-638.
[http://dx.doi.org/10.1136/bmj.318.7184.633] [PMID: 10066203]
[114]
Olin, J.; Schneider, L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2001, (4), CD001747.
[PMID: 11687119]
[115]
Winblad, B.; Kilander, L.; Eriksson, S.; Minthon, L.; Båtsman, S.; Wetterholm, A.L.; Jansson-Blixt, C.; Haglund, A. Severe alzheimer’s disease study group. donepezil in patients with severe alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet, 2006, 367(9516), 1057-1065.
[http://dx.doi.org/10.1016/S0140-6736(06)68350-5] [PMID: 16581404]
[116]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341.
[http://dx.doi.org/10.1056/NEJMoa013128] [PMID: 12672860]
[117]
Schneider, L.S.; Dagerman, K.S.; Higgins, J.P.; McShane, R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch. Neurol., 2011, 68(8), 991-998.
[http://dx.doi.org/10.1001/archneurol.2011.69] [PMID: 21482915]
[118]
Anderson, R.M.; Hadjichrysanthou, C.; Evans, S.; Wong, M.M. Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet, 2017, 390(10110), 2327-2329.
[http://dx.doi.org/10.1016/S0140-6736(17)32399-1] [PMID: 29185425]
[119]
Cummings, J.; Feldman, H.H.; Scheltens, P. The “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 76.
[http://dx.doi.org/10.1186/s13195-019-0529-5] [PMID: 31470905]
[120]
Yiannopoulou, K.G.; Anastasiou, A.I.; Zachariou, V.; Pelidou, S.H. Reasons for failed trials of disease-modifying treatments for alzheimer disease and their contribution in recent research. Biomedicines, 2019, 7(4), E97.
[http://dx.doi.org/10.3390/biomedicines7040097] [PMID: 31835422]
[121]
Fu, H.J.; Liu, B.; Frost, J.L.; Lemere, C.A. Amyloid-beta immunotherapy for Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 197-206.
[http://dx.doi.org/10.2174/187152710791012017] [PMID: 20205640]
[122]
Reardon, S. Antibody drugs for Alzheimer’s show glimmers of promise. Nature, 2015, 523(7562), 509-510.
[http://dx.doi.org/10.1038/nature.2015.18031] [PMID: 26223602]
[123]
Wisniewski, T.; Goñi, F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 2015, 85(6), 1162-1176.
[http://dx.doi.org/10.1016/j.neuron.2014.12.064] [PMID: 25789753]
[124]
Wisniewski, T. Follow-up of active Aβ immunization in Alzheimer disease. Nat. Rev. Neurol., 2019, 15(9), 495-496.
[http://dx.doi.org/10.1038/s41582-019-0239-4] [PMID: 31308505]
[125]
Rinne, J.O.; Brooks, D.J.; Rossor, M.N.; Fox, N.C.; Bullock, R.; Klunk, W.E.; Mathis, C.A.; Blennow, K.; Barakos, J.; Okello, A.A.; Rodriguez Martinez de Liano, S.; Liu, E.; Koller, M.; Gregg, K.M.; Schenk, D.; Black, R.; Grundman, M. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol., 2010, 9(4), 363-372.
[http://dx.doi.org/10.1016/S1474-4422(10)70043-0] [PMID: 20189881]
[126]
Selkoe, D.J. Alzheimer disease and aducanumab: adjusting our approach. Nat. Rev. Neurol., 2019, 15(7), 365-366.
[http://dx.doi.org/10.1038/s41582-019-0205-1] [PMID: 31138932]
[127]
Sperling, R.A.; Jack, C.R., Jr; Aisen, P.S. Testing the right target and right drug at the right stage. Sci. Transl. Med., 2011, 3(111), 111cm33.
[http://dx.doi.org/10.1126/scitranslmed.3002609] [PMID: 22133718]
[128]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[129]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[130]
McGeer, P.L.; McGeer, E.G. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging, 2007, 28(5), 639-647.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.013] [PMID: 16697488]
[131]
Miguel-Álvarez, M.; Santos-Lozano, A.; Sanchis-Gomar, F.; Fiuza-Luces, C.; Pareja-Galeano, H.; Garatachea, N.; Lucia, A. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging, 2015, 32(2), 139-147.
[http://dx.doi.org/10.1007/s40266-015-0239-z] [PMID: 25644018]
[132]
de Jong, D.; Jansen, R.; Hoefnagels, W.; Jellesma-Eggenkamp, M.; Verbeek, M.; Borm, G.; Kremer, B. No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: a randomized controlled trial. PLoS One, 2008, 3(1), e1475.
[http://dx.doi.org/10.1371/journal.pone.0001475] [PMID: 18213383]
[133]
Aisen, P.S.; Schafer, K.A.; Grundman, M.; Pfeiffer, E.; Sano, M.; Davis, K.L.; Farlow, M.R.; Jin, S.; Thomas, R.G.; Thal, L.J. Alzheimer’s Disease Cooperative Study. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA, 2003, 289(21), 2819-2826.
[http://dx.doi.org/10.1001/jama.289.21.2819] [PMID: 12783912]
[134]
Reines, S.A.; Block, G.A.; Morris, J.C.; Liu, G.; Nessly, M.L.; Lines, C.R.; Norman, B.A.; Baranak, C.C. Rofecoxib Protocol 091 Study Group. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, 2004, 62(1), 66-71.
[http://dx.doi.org/10.1212/WNL.62.1.66] [PMID: 14718699]
[135]
Bentham, P.; Gray, R.; Sellwood, E.; Hills, R.; Crome, P.; Raftery, J. AD2000 Collaborative Group. Aspirin in Alzheimer’s disease (AD2000): a randomised open-label trial. Lancet Neurol., 2008, 7(1), 41-49.
[http://dx.doi.org/10.1016/S1474-4422(07)70293-4] [PMID: 18068522]
[136]
Breitner, J.C.; Baker, L.D.; Montine, T.J.; Meinert, C.L.; Lyketsos, C.G.; Ashe, K.H.; Brandt, J.; Craft, S.; Evans, D.E.; Green, R.C.; Ismail, M.S.; Martin, B.K.; Mullan, M.J.; Sabbagh, M.; Tariot, P.N. ADAPT Research Group. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement., 2011, 7(4), 402-411.
[http://dx.doi.org/10.1016/j.jalz.2010.12.014] [PMID: 21784351]
[137]
McGeer, P.L.; Guo, J.P.; Lee, M.; Kennedy, K.; McGeer, E.G. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs. J. Alzheimers Dis., 2018, 62(3), 1219-1222.
[http://dx.doi.org/10.3233/JAD-170706] [PMID: 29103042]
[138]
Thawkar, B.S.; Kaur, G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J. Neuroimmunol., 2019, 326, 62-74.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.010] [PMID: 30502599]
[139]
Li, Q.; Chen, L.; Liu, X.; Li, X.; Cao, Y.; Bai, Y.; Qi, F. Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. J. Cell. Biochem., 2018, 119(8), 7053-7062.
[http://dx.doi.org/10.1002/jcb.27023] [PMID: 29737568]
[140]
Lee, C.M.; Lee, D.S.; Jung, W.K.; Yoo, J.S.; Yim, M.J.; Choi, Y.H.; Park, S.; Seo, S.K.; Choi, J.S.; Lee, Y.M.; Park, W.S.; Choi, I.W. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. Int. J. Mol. Med., 2016, 38(3), 912-918.
[http://dx.doi.org/10.3892/ijmm.2016.2667] [PMID: 27430883]
[141]
Wang, H.M.; Zhang, T.; Huang, J.K.; Xiang, J.Y.; Chen, J.J.; Fu, J.L.; Zhao, Y.W. Edaravone attenuates the proinflammatory response in amyloid-β-treated microglia by inhibiting NLRP3 inflammasome-mediated IL-1β secretion. Cell. Physiol. Biochem., 2017, 43(3), 1113-1125.
[http://dx.doi.org/10.1159/000481753] [PMID: 28977782]
[142]
La Rosa, F.; Saresella, M.; Marventano, I.; Piancone, F.; Ripamonti, E.; Al-Daghri, N.; Bazzini, C.; Zoia, C.P.; Conti, E.; Ferrarese, C.; Clerici, M. Stavudine reduces nlrp3 inflammasome activation and modulates amyloid-β autophagy. J. Alzheimers Dis., 2019, 72(2), 401-412.
[http://dx.doi.org/10.3233/JAD-181259] [PMID: 31594217]
[143]
Shi, J.Q.; Zhang, C.C.; Sun, X.L.; Cheng, X.X.; Wang, J.B.; Zhang, Y.D.; Xu, J.; Zou, H.Q. Antimalarial drug artemisinin extenuates amyloidogenesis and neuroinflammation in APPswe/PS1dE9 transgenic mice via inhibition of nuclear factor-κB and NLRP3 inflammasome activation. CNS Neurosci. Ther., 2013, 19(4), 262-268.
[http://dx.doi.org/10.1111/cns.12066] [PMID: 23406388]
[144]
Feng, J.; Wang, J.X.; Du, Y.H.; Liu, Y.; Zhang, W.; Chen, J.F.; Liu, Y.J.; Zheng, M.; Wang, K.J.; He, G.Q. Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice. CNS Neurosci. Ther., 2018, 24(12), 1207-1218.
[http://dx.doi.org/10.1111/cns.12983] [PMID: 29869390]
[145]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural Insights of benzenesulfonamide analogues as nlrp3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[146]
Yin, J.; Zhao, F.; Chojnacki, J.E.; Fulp, J.; Klein, W.L.; Zhang, S.; Zhu, X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(3), 1977-1987.
[http://dx.doi.org/10.1007/s12035-017-0467-9] [PMID: 28255908]
[147]
Perera, A.P.; Fernando, R.; Shinde, T.; Gundamaraju, R.; Southam, B.; Sohal, S.S.; Robertson, A.A.B.; Schroder, K.; Kunde, D.; Eri, R. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci. Rep., 2018, 8(1), 8618.
[http://dx.doi.org/10.1038/s41598-018-26775-w] [PMID: 29872077]
[148]
Daniels, M.J.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7, 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[149]
Ross, F.M.; Allan, S.M.; Rothwell, N.J.; Verkhratsky, A. A dual role for interleukin-1 in LTP in mouse hippocampal slices. J. Neuroimmunol., 2003, 144(1-2), 61-67.
[http://dx.doi.org/10.1016/j.jneuroim.2003.08.030] [PMID: 14597099]
[150]
Pavlowsky, A.; Zanchi, A.; Pallotto, M.; Giustetto, M.; Chelly, J.; Sala, C.; Billuart, P. Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions. Commun. Integr. Biol., 2010, 3(3), 245-247.
[http://dx.doi.org/10.4161/cib.3.3.11414] [PMID: 20714405]
[151]
Avital, A.; Goshen, I.; Kamsler, A.; Segal, M.; Iverfeldt, K.; Richter-Levin, G.; Yirmiya, R. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus, 2003, 13(7), 826-834.
[http://dx.doi.org/10.1002/hipo.10135] [PMID: 14620878]
[152]
Albensi, B.C.; Mattson, M.P. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse, 2000, 35(2), 151-159.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<151::AIDSYN8>3.0.CO;2-P] [PMID: 10611641]
[153]
Woods, L.T.; Ajit, D.; Camden, J.M.; Erb, L.; Weisman, G.A. Purinergic receptors as potential therapeutic targets in Alzheimer’s disease. Neuropharmacology, 2016, 104, 169-179.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.031] [PMID: 26519903]
[154]
Buchhave, P.; Minthon, L.; Zetterberg, H.; Wallin, A.K.; Blennow, K.; Hansson, O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry, 2012, 69(1), 98-106.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.155] [PMID: 22213792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy