Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Protective Roles and Molecular Mechanisms of Troxerutin (Vitamin P4) for the Treatment of Chronic Diseases: A Mechanistic Review

Author(s): Mohammad Zamanian, Gholamreza Bazmandegan, Antoni Sureda, Eduardo Sobarzo-Sanchez, Hasan Yousefi-Manesh and Samira Shirooie*

Volume 19, Issue 1, 2021

Published on: 09 May, 2020

Page: [97 - 110] Pages: 14

DOI: 10.2174/1570159X18666200510020744

Price: $65

Abstract

Troxerutin (TRX), a semi-synthetic bioflavonoid derived from rutin, has been reported to exert several pharmacological effects including antioxidant, anti-inflammatory, antihyperlipidemic, and nephroprotective. However, the related molecular details and its mechanisms remain poorly understood. In the present review, we presented evidences from the diversity in vitro and in vivo studies on the therapeutic potential of TRX against neurodegenerative, diabetes, cancer and cardiovascular diseases with the purpose to find molecular pathways related to the treatment efficacy. TRX has a beneficial role in many diseases through multiple mechanisms including, increasing antioxidant enzymes and reducing oxidative damage, decreasing in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and increasing the antiapoptotic BCL-2, increasing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and downregulating the nuclear factor κB (NFκ). TRX also reduces acetylcholinesterase activity and upregulates phosphoinositide 3- kinase/Akt signaling pathway in Alzheimer’s disease models. Natural products such as TRX may develop numerous and intracellular pathways at several steps in the treatment of many diseases. Molecular mechanisms of action are revealing novel, possible combinational beneficial approaches to treat multiple pathological conditions.

Keywords: Troxerutin, flavonoids, inflammation, antioxidant, natural product, neurodegeneration.

Graphical Abstract
[1]
Farajdokht, F.; Amani, M.; Mirzaei, B.F.; Alihemmati, A.; Mohaddes, G.; Babri, S. Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI J., 2017, 16, 1081-1089.
[PMID: 29285004]
[2]
Zamanian, M.; Hajizadeh, M.R.; Esmaeili, N.A.; Shamsizadeh, A.; Allahtavakoli, M. Antifatigue effects of troxerutin on exercise endurance capacity, oxidative stress and matrix metalloproteinase-9 levels in trained male rats. Fundam. Clin. Pharmacol., 2017, 31(4), 447-455.
[http://dx.doi.org/10.1111/fcp.12280] [PMID: 28214375]
[3]
Shan, Q.; Zhuang, J.; Zheng, G.; Zhang, Z.; Zhang, Y.; Lu, J.; Zheng, Y. Troxerutin reduces kidney damage against BDE-47-induced apoptosis via inhibiting NOX2 activity and increasing nrf2 activity. Oxid. Med. Cell. Longev., 2017, 20176034692
[http://dx.doi.org/10.1155/2017/6034692]] [PMID: 29163754]
[4]
Zamanian, M.; Shamsizadeh, A.; Esmaeili, N. A.; Hajizadeh, M.; Allahtavakoli, F.; Rahmani, M.; Kaeidi, A.; Safari Khalegh, H.; Allahtavakoli, M. Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats. Can. J. Physiol. Pharmacol., 2017, 95(6), 708-713.
[http://dx.doi.org/10.1139/cjpp-2016-0653] [PMID: 28187266]
[5]
Azarfarin, M.; Farajdokht, F.; Babri, S.; Salehpour, F.; Taghizadeh, M.; Mohaddes, G. Effects of troxerutin on anxiety- and depressive-like behaviors induced by chronic mild stress in adult male rats. Iran. J. Basic Med. Sci., 2018, 21(8), 781-786.
[PMID: 30186563]
[6]
Elangovan, P.; Pari, L. Ameliorating effects of troxerutin on nickel-induced oxidative stress in rats. Redox Rep., 2013, 18(6), 224-232.
[http://dx.doi.org/10.1179/1351000213Y.0000000055] [PMID: 24112957]
[7]
Meng, X. Health benefits and molecular mechanisms of resveratrol: a narrative review, 2020. 9(3), 340..
[http://dx.doi.org/10.3390/foods9030340]
[8]
Ríos, J.-L. A pharmacological update of ellagic acid., 2018; 84(15), 1068-1093.
[http://dx.doi.org/10.1055/a-0633-9492]
[9]
Budzynska, B. Rutin as neuroprotective agent: from bench to bedside, 2019, 26(27), 5152-5164..
[http://dx.doi.org/10.2174/0929867324666171003114154]
[10]
Khushboo, S.B.; Sharma, B. Antidepressants: mechanism of action, toxicity and possible amelioration. J. Appl. Biotechnol. Bioeng, 2017, 3, 1-13.
[11]
Zavvari, O.Z.; Mirzaei, B.F.; Hamidian, G.R.; Mehri, K.; Qadiri, A.; Ahmadi, M.; Oghbaei, H.; Vatankhah, A.M.; Keyhanmanesh, R. Troxerutin affects the male fertility in prepubertal type 1 diabetic male rats. Iran. J. Basic Med. Sci., 2019, 22(2), 197-205.
[PMID: 30834086]
[12]
Yousefi-Manesh, H.; Shirooie, S.; Partoazar, A.; Nikoui, V.; Estakhri, M.R.A.; Bakhtiarian, A. Hepatoprotective effects of phosphatidylserine liposomes on carbon tetrachloride-induced hepatotoxicity in rats. J. Cell. Biochem., 2019. [Epub a head of Print
[http://dx.doi.org/10.1002/jcb.28464] [PMID: 30770580]
[13]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[14]
Gupta, V.; Sharma, B. Role of phytochemicals in neurotrophins mediated regulation of Alzheimer’s disease. Int. J. Complement. Alt. Med., 2017, 7(4), 00231.
[15]
Badalzadeh, R.; Chodari, L.; Ghorbanzadeh, V. Troxerutin, a bioflavonoid, improves oxidative stress in blood of streptozotocin-induced type-1 diabetic rats. Indian J. Pharm. Sci., 2017, 13(2), 75-86.
[16]
Geetha, R.; Sathiya, P.C.; Anuradha, C.V. Troxerutin abrogates mitochondrial oxidative stress and myocardial apoptosis in mice fed calorie-rich diet. Chem. Biol. Interact., 2017, 278, 74-83.
[http://dx.doi.org/10.1016/j.cbi.2017.09.012] [PMID: 28916335]
[17]
Battino, M.; Giampieri, F.; Pistollato, F.; Sureda, A.; de Oliveira, M.R.; Pittalà, V.; Fallarino, F.; Nabavi, S.F.; Atanasov, A.G.; Nabavi, S.M. Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol. Adv., 2018, 36(2), 358-370.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.012] [PMID: 29277308]
[18]
Rashidian, A.; Muhammadnejad, A.; Dehpour, A.R.; Mehr, S.E.; Akhavan, M.M.; Shirkoohi, R.; Chamanara, M.; Mousavi, S.E.; Rezayat, S.M. Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway. Inflammopharmacology, 2016, 24(2-3), 109-118.
[http://dx.doi.org/10.1007/s10787-016-0263-6] [PMID: 27038922]
[19]
Thomas, N.S.; George, K.; Selvam, A.A.A. Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Toxicol. In Vitro, 2019, 54, 317-329.
[http://dx.doi.org/10.1016/j.tiv.2018.10.018] [PMID: 30389603]
[20]
Yu, Y.; Zheng, G. Troxerutin protects against diabetic cardiomyopathy through NFκB/AKT/IRS1 in a rat model of type 2 diabetes. Mol. Med. Rep., 2017, 15(6), 3473-3478.
[http://dx.doi.org/10.3892/mmr.2017.6456] [PMID: 28440404]
[21]
De Pablo-Fernández, E.; Lees, A.J.; Holton, J.L.; Warner, T.T. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease. prognosis and neuropathologic correlation of clinical subtypes of parkinson disease. JAMA Neurol., 2019, 76(4), 470-479.
[http://dx.doi.org/10.1001/jamaneurol.2018.4377] [PMID: 30640364]
[22]
Xue, X.; Chen, Y.; Wang, Y.; Zhan, J.; Chen, B.; Wang, X.; Pan, X. Troxerutin suppresses the inflammatory response in advanced glycation end-product-administered chondrocytes and attenuates mouse osteoarthritis development. Food Funct., 2019, 10(8), 5059-5069.
[http://dx.doi.org/10.1039/C9FO01089K] [PMID: 31359010]
[23]
Bianchi, M.; Canavesi, R.; Aprile, S.; Grosa, G.; Del Grosso, E. Troxerutin, a mixture of O-hydroxyethyl derivatives of the natural flavonoid rutin: Chemical stability and analytical aspects. J. Pharm. Biomed. Anal., 2018, 150, 248-257.
[http://dx.doi.org/10.1016/j.jpba.2017.12.018] [PMID: 29258044]
[24]
Xin, X.; Zhang, M.; Li, X.; Lai, F.; Zhao, G. Biocatalytic synthesis of acylated derivatives of troxerutin: their bioavailability and antioxidant properties in vitro. Microb. Cell Fact., 2018, 17(1), 130.
[http://dx.doi.org/10.1186/s12934-018-0976-x] [PMID: 30134913]
[25]
Peterson, C.T.; Sharma, V.; Iablokov, S.N.; Albayrak, L.; Khanipov, K.; Uchitel, S.; Chopra, D.; Mills, P.J.; Fofanov, Y.; Rodionov, D.A.; Peterson, S.N. 16S rRNA gene profiling and genome reconstruction reveal community metabolic interactions and prebiotic potential of medicinal herbs used in neurodegenerative disease and as nootropics. PLoS One, 2019, 14(3)e0213869
[http://dx.doi.org/10.1371/journal.pone.0213869]] [PMID: 30889210]
[26]
Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T. The significance of α-synuclein, amyloid-β and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener. Dis., 2014, 13(2-3), 154-156.
[http://dx.doi.org/10.1159/000354670] [PMID: 24028925]
[27]
Chang, X.; Wang, J.; Jiang, H.; Shi, L.; Xie, J. Hyperpolarization-Activated cyclic nucleotide-gated channels: an emerging role in neurodegenerative diseases. Front. Mol. Neurosci., 2019, 12, 141.
[http://dx.doi.org/10.3389/fnmol.2019.00141] [PMID: 31231190]
[28]
Tarozzi, A.; Angeloni, C.; Malaguti, M.; Morroni, F.; Hrelia, S.; Hrelia, P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid. Med. Cell. Longev., 2013, 2013415078
[http://dx.doi.org/10.1155/2013/415078]] [PMID: 23983898]
[29]
Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology, 2013, 80(19), 1778-1783.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[30]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[31]
Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[32]
Tang, S.; Yao, B.; Li, N.; Lin, S.; Huang, Z. Association of dopamine beta-hydroxylase polymorphisms with Alzheimer’s disease, parkinson’s disease and schizophrenia: evidence based on currently available loci. Cell. Physiol. Biochem., 2018, 51(1), 411-428.
[http://dx.doi.org/10.1159/000495238] [PMID: 30453293]
[33]
Sergeant, N.; Vingtdeux, V.; Eddarkaoui, S.; Gay, M.; Evrard, C.; Le Fur, N.; Laurent, C.; Caillierez, R.; Obriot, H.; Larchanché, P.E.; Farce, A.; Coevoet, M.; Carato, P.; Kouach, M.; Descat, A.; Dallemagne, P.; Buée-Scherrer, V.; Blum, D.; Hamdane, M.; Buée, L.; Melnyk, P. New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease. Neurobiol. Dis., 2019, 129, 217-233.
[http://dx.doi.org/10.1016/j.nbd.2019.03.028] [PMID: 30928644]
[34]
Hulbert, A.J.; Pamplona, R.; Buffenstein, R.; Buttemer, W.A. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev., 2007, 87(4), 1175-1213.
[http://dx.doi.org/10.1152/physrev.00047.2006] [PMID: 17928583]
[35]
Rosini, M.; Simoni, E.; Caporaso, R.; Basagni, F.; Catanzaro, M.; Abu, I.F.; Fagiani, F.; Fusco, F.; Masuzzo, S.; Albani, D.; Lanni, C.; Mellor, I.R.; Minarini, A. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem., 2019, 180, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.011] [PMID: 31301562]
[36]
Dastan, Z.; Pouramir, M.; Ghasemi-Kasman, M.; Ghasemzadeh, Z.; Dadgar, M.; Gol, M.; Ashrafpour, M.; Pourghasem, M.; Moghadamnia, A.A.; Khafri, S. Arbutin reduces cognitive deficit and oxidative stress in animal model of Alzheimer’s disease. Int. J. Neurosci., 2019, 129(11), 1145-1153.
[http://dx.doi.org/10.1080/00207454.2019.1638376] [PMID: 31251091]
[37]
Tobore, T.O. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol. Sci., 2019, 40(8), 1527-1540.
[http://dx.doi.org/10.1007/s10072-019-03863-x] [PMID: 30982132]
[38]
Luca, M.; Luca, A.; Calandra, C. The role of oxidative damage in the pathogenesis and progression of Alzheimer’s Disease and vascular dementia. Oxid. Med. Cell. Longev., 2015, 2015504678
[http://dx.doi.org/10.1155/2015/504678]] [PMID: 26301043]
[39]
Reddy, P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol., 2009, 218(2), 286-292.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.042] [PMID: 19358844]
[40]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[41]
Ma, W.; Wang, S.; Liu, X.; Tang, F.; Zhao, P.; Cheng, K.; Zheng, Q.; Zhuo, Y.; Zhao, X.; Li, X.; Feng, W. Protective effect of troxerutin and cerebroprotein hydrolysate injection on cerebral ischemia through inhibition of oxidative stress and promotion of angiogenesis in rats. Mol. Med. Rep., 2019, 19(4), 3148-3158.
[http://dx.doi.org/10.3892/mmr.2019.9960] [PMID: 30816516]
[42]
Zhào, H.; Liu, Y.; Zeng, J.; Li, D.; Zhang, W.; Huang, Y. Troxerutin and cerebroprotein hydrolysate injection protects neurovascular units from oxygen-glucose deprivation and reoxygenation-induced injury In Vitro. Evid. Based Complement. Alternat. Med., 2018, 20189859672
[http://dx.doi.org/10.1155/2018/9859672]] [PMID: 29853981]
[43]
Lu, J.; Wu, D.M.; Hu, B.; Cheng, W.; Zheng, Y.L.; Zhang, Z.F.; Ye, Q.; Fan, S.H.; Shan, Q.; Wang, Y.J. Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiol. Learn. Mem., 2010, 93(2), 157-164.
[http://dx.doi.org/10.1016/j.nlm.2009.09.006] [PMID: 19766199]
[44]
Lu, J.; Wu, D.M.; Hu, B.; Zheng, Y.L.; Zhang, Z.F.; Wang, Y.J. NGF-Dependent activation of TrkA pathway: A mechanism for the neuroprotective effect of troxerutin in D-galactose-treated mice. Brain Pathol., 2010, 20(5), 952-965.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00397.x] [PMID: 20456366]
[45]
Lu, J.; Wu, D.M.; Zheng, Z.H.; Zheng, Y.L.; Hu, B.; Zhang, Z.F. Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain, 2011, 134(Pt 3), 783-797.
[http://dx.doi.org/10.1093/brain/awq376] [PMID: 21252113]
[46]
Qin, L.; Zhang, J.; Qin, M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci. Lett., 2013, 534, 285-288.
[http://dx.doi.org/10.1016/j.neulet.2012.12.023] [PMID: 23274703]
[47]
Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Cheng, W.; Zhang, Z.F.; Li, M.Q. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J. Immunol., 2013, 190(7), 3466-3479.
[http://dx.doi.org/10.4049/jimmunol.1202862] [PMID: 23420885]
[48]
Babri, S.; Mohaddes, G.; Feizi, I.; Mohammadnia, A.; Niapour, A.; Alihemmati, A.; Amani, M. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer׳s disease: an electrophysiological study. Eur. J. Pharmacol., 2014, 732, 19-25.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.018] [PMID: 24681055]
[49]
Zhang, S.; Li, H.; Zhang, L.; Li, J.; Wang, R.; Wang, M. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res., 2017, 1657, 355-360.
[http://dx.doi.org/10.1016/j.brainres.2016.12.009] [PMID: 27998794]
[50]
Shan, Q.; Zheng, G.H.; Han, X.R.; Wen, X.; Wang, S.; Li, M.Q.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; Zheng, Y.L. Troxerutin Protects kidney tissue against bde-47-induced inflammatory damage through CXCR4-TXNIP/NLRP3 signaling. Oxid. Med. Cell. Longev., 2018, 20189865495
[http://dx.doi.org/10.1155/2018/9865495]] [PMID: 29849929]
[51]
Diba, R.; Mohaddes, G.; Mirzaie Bavil, F.; Farajdokht, F.; Bayandor, P.; Hosseindoost, M.; Mehri, K.; Zavvari, O.Z.; Babri, S. Protective effects of troxerutin on maternal high-fat diet-induced impairments of spatial memory and apelin in the male offspring. Iran. J. Basic Med. Sci., 2018, 21(7), 682-687.
[PMID: 30140406]
[52]
Jamali-Raeufy, N.; Kardgar, S.; Baluchnejadmojarad, T.; Roghani, M.; Goudarzi, M. Troxerutin exerts neuroprotection against lipopolysaccharide (LPS) induced oxidative stress and neuroinflammation through targeting SIRT1/SIRT3 signaling pathway. Metab. Brain Dis., 2019, 34(5), 1505-1513.
[http://dx.doi.org/10.1007/s11011-019-00454-9] [PMID: 31313124]
[53]
Rangasamy, S.B.; Dasarathi, S.; Pahan, P.; Jana, M.; Pahan, K. Low-Dose aspirin upregulates tyrosine hydroxylase and increases dopamine production in dopaminergic neurons: implications for Parkinson’s Disease. J. Neuroimmune Pharmacol., 2019, 14(2), 173-187.
[http://dx.doi.org/10.1007/s11481-018-9808-3] [PMID: 30187283]
[54]
Xu, L.; Pu, J. Alpha-Synuclein in Parkinson’s Disease: from pathogenetic dysfunction to potential clinical application. Parkinsons Dis., 2016, 20161720621
[http://dx.doi.org/10.1155/2016/1720621]] [PMID: 27610264]
[55]
McMillan, P.J.; White, S.S.; Franklin, A.; Greenup, J.L.; Leverenz, J.B.; Raskind, M.A.; Szot, P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res., 2011, 1373, 240-252.
[http://dx.doi.org/10.1016/j.brainres.2010.12.015] [PMID: 21147074]
[56]
GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[57]
Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob. Health, 2019, 7(8), e1020-e1030.
[http://dx.doi.org/10.1016/S2214-109X(19)30255-4] [PMID: 31303293]
[58]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[59]
Yang, Q.; Zhou, L.; Liu, C.; Liu, D.; Zhang, Y.; Li, C.; Shang, Y.; Wei, X.; Li, C.; Wang, J. Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study. Brain Imaging Behav., 2018, 12(5), 1479-1487.
[http://dx.doi.org/10.1007/s11682-017-9815-7] [PMID: 29297155]
[60]
Zang, L.; Shimada, Y.; Nakayama, H.; Chen, W.; Okamoto, A.; Koide, H.; Oku, N.; Dewa, T.; Shiota, M.; Nishimura, N. Therapeutic silencing of centromere protein x ameliorates hyperglycemia in zebrafish and mouse models of type 2 diabetes mellitus. Front. Genet., 2019, 10, 693.
[http://dx.doi.org/10.3389/fgene.2019.00693] [PMID: 31417608]
[61]
Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world--a growing challenge. N. Engl. J. Med., 2007, 356(3), 213-215.
[http://dx.doi.org/10.1056/NEJMp068177] [PMID: 17229948]
[62]
Stenlöf, K.; Cefalu, W.T.; Kim, K.A.; Alba, M.; Usiskin, K.; Tong, C.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes. Metab., 2013, 15(4), 372-382.
[http://dx.doi.org/10.1111/dom.12054] [PMID: 23279307]
[63]
Rheinberger, M.; Jung, B.; Segiet, T.; Nusser, J.; Kreisel, G.; Andreae, A.; Manz, J.; Haas, G.; Banas, B.; Stark, K.; Lammert, A.; Gorski, M.; Heid, I.M.; Krämer, B.K.; Böger, C.A. Poor risk factor control in outpatients with diabetes mellitus type 2 in Germany: The DIAbetes COhoRtE (DIACORE) study. PLoS One, 2019, 14(3)e0213157
[http://dx.doi.org/10.1371/journal.pone.0213157]] [PMID: 30897159]
[64]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[65]
Lenzen, S.; Drinkgern, J.; Tiedge, M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med., 1996, 20(3), 463-466.
[http://dx.doi.org/10.1016/0891-5849(96)02051-5] [PMID: 8720919]
[66]
Grankvist, K.; Marklund, S.L.; Täljedal, I.B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J., 1981, 199(2), 393-398.
[http://dx.doi.org/10.1042/bj1990393] [PMID: 7041886]
[67]
Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet, 2014, 383(9911), 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[68]
Santos, A.S.; Cunha Neto, E.; Fukui, R.T.; Ferreira, L.R.P.; Silva, M.E.R. Increased expression of circulating microrna 101-3p in type 1 diabetes patients: new insights into mirna-regulated pathophysiological pathways for Type 1 Diabetes. Front. Immunol., 2019, 10, 1637.
[http://dx.doi.org/10.3389/fimmu.2019.01637] [PMID: 31396209]
[69]
Ranjith, V.; Radika, M.; Anuradha, C. Effect of troxerutin on insulin resistance induced by post-natal administration of monosodium glutamate: a comparative study with rosiglitazone. J Clin Lab Investiga Updat, 2013, 1, 36-47.
[70]
Awasthi, S.; Ravi, A.; Saraswathi, N.T. Troxerutin imparts preservative effects on albumin by preventing Maillard reaction-mediated early and advanced glycation modification. J. Biomol. Struct. Dyn., 2017, 35(12), 2681-2687.
[http://dx.doi.org/10.1080/07391102.2016.1229218] [PMID: 27589094]
[71]
Sampath, S.; Karundevi, B. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol. Cell. Biochem., 2014, 395(1-2), 11-27.
[http://dx.doi.org/10.1007/s11010-014-2107-2] [PMID: 24880482]
[72]
Chung, H.K.; Choi, S.M.; Ahn, B.O.; Kwak, H.H.; Kim, J.H.; Kim, W.B. Efficacy of troxerutin on streptozotocin-induced rat model in the early stage of diabetic retinopathy. Arzneimittelforschung, 2005, 55(10), 573-580.
[PMID: 16294503]
[73]
Badalzadeh, R.; Layeghzadeh, N.; Alihemmati, A.; Mohammadi, M. Beneficial effect of troxerutin on diabetes-induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. Int. J. Endocrinol. Metab., 2015, 13(2)e25969
[http://dx.doi.org/10.5812/ijem.25969]] [PMID: 25926856]
[74]
Badalzadeh, R.; Mokhtari, B.; Yavari, R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J. Physiol. Sci., 2015, 65(3), 201-215.
[http://dx.doi.org/10.1007/s12576-015-0365-8] [PMID: 25726180]
[75]
Mokhtari, B.; Badalzadeh, R.; Alihemmati, A.; Mohammadi, M. Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. Eur. J. Pharmacol., 2015, 765, 316-321.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.056] [PMID: 26341011]
[76]
Yavari, R.; Badalzadeh, R.; Alipour, M.R.; Tabatabaei, S.M. Modulation of hippocampal gene expression of microRNA-146a/microRNA-155-nuclear factor-kappa B inflammatory signaling by troxerutin in healthy and diabetic rats. Indian J. Pharmacol., 2016, 48(6), 675-680.
[http://dx.doi.org/10.4103/0253-7613.194847] [PMID: 28066106]
[77]
Zhang, S.; Yuan, L.; Zhang, L.; Li, C.; Li, J. Prophylactic use of troxerutin can delay the development of diabetic cognitive dysfunction and improve the expression of nrf2 in the hippocampus on stz diabetic rats. Behav. Neurol., 2018, 20188678539
[http://dx.doi.org/10.1155/2018/8678539]] [PMID: 29849815]
[78]
Chan, J.L.; Mantzoros, C.S. Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis. Pituitary, 2001, 4(1-2), 87-92.
[http://dx.doi.org/10.1023/A:1012947113197] [PMID: 11824513]
[79]
Condorelli, R.A.; La Vignera, S.; Mongioì, L.M.; Alamo, A.; Calogero, A.E. Diabetes mellitus and infertility: Different pathophysiological effects in type 1 and type 2 on sperm function. Front. Endocrinol. (Lausanne), 2018, 9, 268.
[http://dx.doi.org/10.3389/fendo.2018.00268] [PMID: 29887834]
[80]
Qadiri, A.; Mirzaei Bavil, F.; Hamidian, G.; Zavvari Oskuye, Z.; Ahmadi, M.; Oghbaei, H.; Mehri, K.; Vatankhah, A.M.; Keyhanmanesh, R. Administration of troxerutin improves testicular function and structure in type-1 diabetic adult rats by reduction of apoptosis. Avicenna J. Phytomed., 2019, 9(4), 374-385.
[PMID: 31309075]
[81]
Geetha, R.; Radika, M.K.; Priyadarshini, E.; Bhavani, K.; Anuradha, C.V. Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol. Cell. Biochem., 2015, 407(1-2), 263-279.
[http://dx.doi.org/10.1007/s11010-015-2474-3] [PMID: 26077659]
[82]
Malinska, H.; Hüttl, M.; Oliyarnyk, O.; Markova, I.; Poruba, M.; Racova, Z.; Kazdova, L.; Vecera, R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS One, 2019, 14(8)e0220377
[http://dx.doi.org/10.1371/journal.pone.0220377]] [PMID: 31404079]
[83]
Geetha, R.; Yogalakshmi, B.; Sreeja, S.; Bhavani, K.; Anuradha, C.V. Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice. Mol. Cell. Biochem., 2014, 387(1-2), 123-134.
[http://dx.doi.org/10.1007/s11010-013-1877-2] [PMID: 24173620]
[84]
Hoseindoost, M.; Alipour, M.R.; Farajdokht, F.; Diba, R.; Bayandor, P.; Mehri, K.; Nayebi Rad, S.; Babri, S. Effects of troxerutin on inflammatory cytokines and BDNF levels in male offspring of high-fat diet fed rats. Avicenna J. Phytomed., 2019, 9(6), 597-605.
[PMID: 31763218]
[85]
Mehri, K.; Banan Khojasteh, S.M.; Seyed, M.B.K.; Fereshteh, F.; Zavvari, O.Z.; Ebrahimi, H.; Diba, R.; Bayandor, P.; Hosseindoost, M.; Babri, S. Effect of troxerutin on apelin-13, apelin receptors (APJ), and ovarian histological changes in the offspring of high-fat diet fed rats. Iran. J. Basic Med. Sci., 2019, 22(6), 637-642.
[PMID: 31231491]
[86]
Zhang, Z.; Wang, X.; Zheng, G.; Shan, Q.; Lu, J.; Fan, S.; Sun, C.; Wu, D.; Zhang, C.; Su, W.; Sui, J.; Zheng, Y. Troxerutin attenuates enhancement of hepatic gluconeogenesis by inhibiting NOD Activation-mediated inflammation in high-fat diet-treated mice. Int. J. Mol. Sci., 2016, 18(1)E31
[http://dx.doi.org/10.3390/ijms18010031]] [PMID: 28029143]
[87]
Zhang, Z.F.; Fan, S.H.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem. Pharmacol., 2014, 91(1), 74-86.
[http://dx.doi.org/10.1016/j.bcp.2014.07.002] [PMID: 25026599]
[88]
Fan, S.H.; Zhang, Z.F.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B.; Wang, Y.Y. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int. Immunopharmacol., 2009, 9(1), 91-96.
[http://dx.doi.org/10.1016/j.intimp.2008.10.008] [PMID: 19000936]
[89]
Liu, C.M.; Ma, J.Q.; Lou, Y. Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage. Food Chem. Toxicol., 2010, 48(10), 2809-2817.
[http://dx.doi.org/10.1016/j.fct.2010.07.011] [PMID: 20633594]
[90]
Yang, X.; Xu, W.; Huang, K.; Zhang, B.; Wang, H.; Zhang, X.; Gong, L.; Luo, Y.; He, X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity. FASEB J., 2019, 33(2), 2212-2227.
[http://dx.doi.org/10.1096/fj.201800742R] [PMID: 30247986]
[91]
Dehnamaki, F.; Karimi, A.; Pilevarian, A.A.; Fatemi, I.; Hakimizadeh, E.; Kaeidi, A.; Allahtavakoli, M.; Rahmani, M.R.; Khademalhosseini, M.; Bazmandegan, G. Treatment with troxerutin protects against cisplatin-induced kidney injury in mice. Acta Chir. Belg., 2019, 119(1), 31-37.
[http://dx.doi.org/10.1080/00015458.2018.1455418] [PMID: 29653502]
[92]
Elangovan, P.; Ramakrishnan, R.; Amudha, K.; Jalaludeen, A.M.; Sagaran, G.K.; Babu, F.R.; Pari, L. Beneficial protective effect of troxerutin on nickel-induced renal dysfunction in wistar rats. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(1), 1-14.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2017025087] [PMID: 29772996]
[93]
Salama, S.A.; Arab, H.H.; Maghrabi, I.A. Troxerutin down-regulates KIM-1, modulates p38 MAPK signaling, and enhances renal regenerative capacity in a rat model of gentamycin-induced acute kidney injury. Food Funct., 2018, 9(12), 6632-6642.
[http://dx.doi.org/10.1039/C8FO01086B] [PMID: 30511081]
[94]
Adam, B.S.; Pentz, R.; Siegers, C.P.; Strubelt, O.; Tegtmeier, M. Troxerutin protects the isolated perfused rat liver from a possible lipid peroxidation by coumarin. Phytomedicine, 2005, 12(1-2), 52-61.
[http://dx.doi.org/10.1016/j.phymed.2004.01.007] [PMID: 15693708]
[95]
Zhang, Z.F.; Fan, S.H.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J. Agric. Food Chem., 2009, 57(17), 7731-7736.
[http://dx.doi.org/10.1021/jf9012357] [PMID: 19722705]
[96]
Ping, X.; Junqing, J.; Junfeng, J.; Enjin, J. Radioprotective effects of troxerutin against gamma irradiation in mice liver. Int. J. Radiat. Biol., 2012, 88(8), 607-612.
[http://dx.doi.org/10.3109/09553002.2012.692494] [PMID: 22571496]
[97]
Thomas, N.S.; George, K.; Arivalagan, S.; Mani, V.; Siddique, A.I.; Namasivayam, N. The in vivo antineoplastic and therapeutic efficacy of troxerutin on rat preneoplastic liver: biochemical, histological and cellular aspects. Eur. J. Nutr., 2017, 56(7), 2353-2366.
[http://dx.doi.org/10.1007/s00394-016-1275-0] [PMID: 27488610]
[98]
Panat, N.A.; Singh, B.G.; Maurya, D.K.; Sandur, S.K.; Ghaskadbi, S.S. Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation. Chem. Biol. Interact., 2016, 251, 34-44.
[http://dx.doi.org/10.1016/j.cbi.2016.03.024] [PMID: 27016192]
[99]
Xu, G.Y.; Tang, X.J. Troxerutin (TXN) potentiated 5-Fluorouracil (5-Fu) treatment of human gastric cancer through suppressing STAT3/NF-κB and Bcl-2 signaling pathways. Biomed. Pharmacother., 2017, 92, 95-107.
[http://dx.doi.org/10.1016/j.biopha.2017.04.059] [PMID: 28531805]
[100]
Subastri, A.; Suyavaran, A.; Preedia, B.E.; Nithyananthan, S.; Barathidasan, R.; Thirunavukkarasu, C. Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma. J. Cell. Physiol., 2018, 233(3), 1775-1790.
[http://dx.doi.org/10.1002/jcp.26061] [PMID: 28628229]
[101]
Vinothkumar, R.; Vinoth, K.R.; Sudha, M.; Viswanathan, P.; Balasubramanian, T.; Nalini, N. Modulatory effect of troxerutin on biotransforming enzymes and preneoplasic lesions induced by 1,2-dimethylhydrazine in rat colon carcinogenesis. Exp. Mol. Pathol., 2014, 96(1), 15-26.
[http://dx.doi.org/10.1016/j.yexmp.2013.10.009] [PMID: 24512697]
[102]
Subastri, A.; Harikrishna, K.; Sureshkumar, M.; Alshammari, G.M.; Aristatile, B.; Thirunavukkarasu, C. Effect of troxerutin on 2-aminoanthracene and DNA interaction and its anti-mutagenic property. Biomed. Pharmacother., 2017, 88, 325-334.
[http://dx.doi.org/10.1016/j.biopha.2017.01.042] [PMID: 28119234]
[103]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Magid, D.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R.; Moy, C.S.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Schreiner, P.J.; Sorlie, P.D.; Stein, J.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation, 2013, 127(1), e6-e245.
[http://dx.doi.org/10.1161/CIR.0b013e31828124ad] [PMID: 23239837]
[104]
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[105]
Enas, E.A.; Singh, V.; Munjal, Y.P.; Gupta, R.; Patel, K.C.; Bhandari, S.; Agarwal, A.K.; Joshi, S.R.; Anoop, M.; Prabhakaran, D.; Shah, B.; Reddy, S.; Sharma, B.; Trehan, N.; Yavagal, S.T.; Kasliwal, R.R. Second Indo-US Health Summit Expert Panel. Recommendations of the second Indo-U.S. health summit on prevention and control of cardiovascular disease among Asian Indians. Indian Heart J., 2009, 61(3), 265-274.
[PMID: 20503833]
[106]
Shu, L.; Zhang, W.; Huang, C.; Huang, G.; Su, G. Troxerutin protects against myocardial ischemia/reperfusion injury via pi3k/akt pathway in rats. Cell. Physiol. Biochem., 2017, 44(5), 1939-1948.
[http://dx.doi.org/10.1159/000485884] [PMID: 29241161]
[107]
Shu, L.; Zhang, W.; Huang, G.; Huang, C.; Zhu, X.; Su, G.; Xu, J. Troxerutin attenuates myocardial cell apoptosis following myocardial ischemia-reperfusion injury through inhibition of miR-146a-5p expression. J. Cell. Physiol., 2019, 234(6), 9274-9282.
[http://dx.doi.org/10.1002/jcp.27607] [PMID: 30417352]
[108]
Najafi, M.; Noroozi, E.; Javadi, A.; Badalzadeh, R. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed. Pharmacother., 2018, 102, 385-391.
[http://dx.doi.org/10.1016/j.biopha.2018.03.047] [PMID: 29573617]
[109]
Rajagopalan, G.; Chandrasekaran, S.P.; Carani, V.A. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart. Clin. Exp. Pharmacol. Physiol., 2017, 44(1), 103-113.
[http://dx.doi.org/10.1111/1440-1681.12671] [PMID: 27626906]
[110]
Raja, B.; Saranya, D.; Prabhu, R. Role of flavonoid troxerutin on blood pressure, oxidative stress and regulation of lipid metabolism. Front. Biosci. (Elite Ed.), 2019, 11, 121-129.
[http://dx.doi.org/10.2741/e851] [PMID: 30468643]
[111]
Bayandor, P.; Farajdokht, F.; Mohaddes, G.; Diba, R.; Hosseindoost, M.; Mehri, K.; Zavvari, O.Z.; Babri, S. The effect of troxerutin on anxiety- and depressive-like behaviours in the offspring of high-fat diet fed dams. Arch. Physiol. Biochem., 2019, 125(2), 156-162.
[http://dx.doi.org/10.1080/13813455.2018.1443142] [PMID: 29482367]
[112]
Elangovan, P.; Jalaludeen, A.M.; Ramakrishnan, R.; Pari, L. Protective effect of troxerutin on nickel-induced testicular toxicity in Wistar Rats. J. Environ. Pathol. Toxicol. Oncol., 2016, 35(2), 133-146.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2016015384] [PMID: 27481491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy