Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

USP48在卵巢癌中维持化学耐药性和转移

卷 20, 期 9, 2020

页: [689 - 699] 页: 11

弟呕挨: 10.2174/1568009620666200503045400

价格: $65

摘要

背景:泛素特异性蛋白酶48(USP48)是去泛素化酶(DUBs)家族的成员。但是,USP48在卵巢癌中的功能仍不清楚。 目的:本研究揭示USP48基因敲低可以显着抑制ES2、3AO和A2780细胞的细胞迁移和侵袭,而不影响细胞增殖。 方法:卡铂(CBP)处理后,USP48消融可增加ES2、3AO和A2780细胞的凋亡率,并裂解PARP和caspase 3的表达水平。皮下肿瘤和腹膜内注射的实验表明,USP48的敲低显着提高了对CBP的反应性,并减轻了体内转移。同时,USP48缺乏导致小鼠存活率提高。 结果:最后,对临床样本以及TCGA和Kaplan-Meier Plot数据库的分析表明,USP48在卵巢癌患者中的高表达与不良的生存率和对CBP治疗的抵抗力有关。 结论:总之,USP48可能是卵巢癌患者的潜在治疗靶标。

关键词: 凋亡,化学抗药性,DUBs,转移,卵巢癌,USP48。

图形摘要
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Leong, H.S.; Galletta, L.; Etemadmoghadam, D.; George, J.; Köbel, M.; Ramus, S.J.; Bowtell, D. Australian ovarian cancer study. Efficient molecular subtype classification of high-grade serous ovarian cancer. J. Pathol., 2015, 236(3), 272-277.
[http://dx.doi.org/10.1002/path.4536] [PMID: 25810134]
[3]
Zhang, A.W.; McPherson, A.; Milne, K.; Kroeger, D.R.; Hamilton, P.T.; Miranda, A.; Funnell, T.; Little, N.; de Souza, C.P.E.; Laan, S.; LeDoux, S.; Cochrane, D.R.; Lim, J.L.P.; Yang, W.; Roth, A.; Smith, M.A.; Ho, J.; Tse, K.; Zeng, T.; Shlafman, I.; Mayo, M.R.; Moore, R.; Failmezger, H.; Heindl, A.; Wang, Y.K.; Bashashati, A.; Grewal, D.S.; Brown, S.D.; Lai, D.; Wan, A.N.C.; Nielsen, C.B.; Huebner, C.; Tessier-Cloutier, B.; Anglesio, M.S.; Bouchard-Cote, A.; Yuan, Y.; Wasserman, W.W.; Gilks, C.B.; Karnezis, A.N.; Aparicio, S.; McAlpine, J.N.; Huntsman, D.G.; Holt, R.A.; Nelson, B.H.; Shah, S.P. interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell, 2018, 173(7), 1755-1769.
[http://dx.doi.org/10.1016/j.cell.2018.03.073]
[4]
Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[5]
Agarwal, R.; Kaye, S.B. Ovarian cancer: Strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer, 2003, 3(7), 502-516.
[http://dx.doi.org/10.1038/nrc1123] [PMID: 12835670]
[6]
Harrigan, J.A.; Jacq, X.; Martin, N.M.; Jackson, S.P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov., 2018, 17(1), 57-78.
[http://dx.doi.org/10.1038/nrd.2017.152] [PMID: 28959952]
[7]
Abdul Rehman, S.A.; Kristariyanto, Y.A.; Choi, S.Y.; Nkosi, P.J.; Weidlich, S.; Labib, K.; Hofmann, K.; Kulathu, Y. mindy-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell, 2016, 63(1), 146-155.
[http://dx.doi.org/10.1016/j.molcel.2016.05.009] [PMID: 27292798]
[8]
Wu, X.; Luo, Q.; Zhao, P.; Chang, W.; Wang, Y.; Shu, T.; Ding, F.; Li, B.; Liu, Z. JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1. Cell Death Differ., 2020, 27(1), 55-70.
[http://dx.doi.org/10.1038/s41418-019-0339-0] [PMID: 31043700]
[9]
Wu, X.; Luo, Q.; Zhao, P.; Chang, W.; Wang, Y.; Shu, T.; Ding, F.; Li, B.; Liu, Z. MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 2961-2966.
[http://dx.doi.org/10.1073/pnas.1814742116] [PMID: 30718431]
[10]
Velimezi, G.; Robinson-Garcia, L.; Muñoz-Martínez, F.; Wiegant, W.W.; Ferreira da Silva, J.; Owusu, M.; Moder, M.; Wiedner, M.; Rosenthal, S.B.; Fisch, K.M.; Moffat, J.; Menche, J.; van Attikum, H.; Jackson, S.P.; Loizou, J.I. Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48. Nat. Commun., 2018, 9(1), 2280.
[http://dx.doi.org/10.1038/s41467-018-04649-z] [PMID: 29891926]
[11]
Ye, S.; Lawlor, M.A.; Rivera-Reyes, A.; Egolf, S.; Chor, S.; Pak, K.; Ciotti, G.E.; Lee, A.C.; Marino, G.E.; Shah, J.; Niedzwicki, D.; Weber, K.; Park, P.M.C.; Alam, M.Z.; Grazioli, A.; Haldar, M.; Xu, M.; Perry, J.A.; Qi, J.; Eisinger-Mathason, T.S.K. YAP1-mediated suppression of USP31 enhances NFκB activity to promote sarcomagenesis. Cancer Res., 2018, 78(10), 2705-2720.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-4052] [PMID: 29490948]
[12]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo, E. Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P. CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[13]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[14]
Lopez, J.; Banerjee, S.; Kaye, S.B. New developments in the treatment of ovarian cancer-future perspectives. Ann. Oncol., 2013, 24(Suppl. 10), x69-x76.
[http://dx.doi.org/10.1093/annonc/mdt475] [PMID: 24265409]
[15]
Patel, A.G.; Sarkaria, J.N.; Kaufmann, S.H. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. USA, 2011, 108(8), 3406-3411.
[http://dx.doi.org/10.1073/pnas.1013715108] [PMID: 21300883]
[16]
Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.; Meier, W.; Shapira-Frommer, R.; Safra, T.; Matei, D.; Macpherson, E.; Watkins, C.; Carmichael, J.; Matulonis, U. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med., 2012, 366(15), 1382-1392.
[http://dx.doi.org/10.1056/NEJMoa1105535] [PMID: 22452356]
[17]
Bell, D.; Berchuck, A.; Birrer, M. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353), 609-615.
[http://dx.doi.org/10.1038/nature10166]] [PMID: 21720365]
[18]
Bolton, K.L.; Chenevix-Trench, G.; Goh, C.; Sadetzki, S.; Ramus, S.J.; Karlan, B.Y.; Lambrechts, D.; Despierre, E.; Barrowdale, D.; McGuffog, L.; Healey, S.; Easton, D.F.; Sinilnikova, O.; Benítez, J.; García, M.J.; Neuhausen, S.; Gail, M.H.; Hartge, P.; Peock, S.; Frost, D.; Evans, D.G.; Eeles, R.; Godwin, A.K.; Daly, M.B.; Kwong, A.; Ma, E.S.; Lázaro, C.; Blanco, I.; Montagna, M.; D’Andrea, E.; Nicoletto, M.O.; Johnatty, S.E.; Kjær, S.K.; Jensen, A.; Høgdall, E.; Goode, E.L.; Fridley, B.L.; Loud, J.T.; Greene, M.H.; Mai, P.L.; Chetrit, A.; Lubin, F.; Hirsh-Yechezkel, G.; Glendon, G.; Andrulis, I.L.; Toland, A.E.; Senter, L.; Gore, M.E.; Gourley, C.; Michie, C.O.; Song, H.; Tyrer, J.; Whittemore, A.S.; McGuire, V.; Sieh, W.; Kristoffersson, U.; Olsson, H.; Borg, Å.; Levine, D.A.; Steele, L.; Beattie, M.S.; Chan, S.; Nussbaum, R.L.; Moysich, K.B.; Gross, J.; Cass, I.; Walsh, C.; Li, A.J.; Leuchter, R.; Gordon, O.; Garcia-Closas, M.; Gayther, S.A.; Chanock, S.J.; Antoniou, A.C.; Pharoah, P.D. EMBRACE; kConFab Investigators; Cancer Genome Atlas Research Network. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA, 2012, 307(4), 382-390.
[http://dx.doi.org/10.1001/jama.2012.20] [PMID: 22274685]
[19]
McLachlan, J.; George, A.; Banerjee, S. The current status of PARP inhibitors in ovarian cancer. Tumori, 2016, 102(5), 433-440.
[http://dx.doi.org/10.5301/tj.5000558] [PMID: 27716873]
[20]
Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; Leary, A.; Holloway, R.W.; Gancedo, M.A.; Fong, P.C.; Goh, J.C.; O’Malley, D.M.; Armstrong, D.K.; Garcia-Donas, J.; Swisher, E.M.; Floquet, A.; Konecny, G.E.; McNeish, I.A.; Scott, C.L.; Cameron, T.; Maloney, L.; Isaacson, J.; Goble, S.; Grace, C.; Harding, T.C.; Raponi, M.; Sun, J.; Lin, K.K.; Giordano, H.; Ledermann, J.A. ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10106), 1949-1961.
[http://dx.doi.org/10.1016/S0140-6736(17)32440-6] [PMID: 28916367]
[21]
Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; Gourley, C.; Banerjee, S.; Oza, A.; González-Martín, A.; Aghajanian, C.; Bradley, W.; Mathews, C.; Liu, J.; Lowe, E.S.; Bloomfield, R.; DiSilvestro, P. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med., 2018, 379(26), 2495-2505.
[http://dx.doi.org/10.1056/NEJMoa1810858] [PMID: 30345884]
[22]
Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging biological principles of metastasis. Cell, 2017, 168(4), 670-691.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[23]
Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell, 2016, 166(1), 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[24]
Chung, J.H.; Rho, J.K.; Xu, X.; Lee, J.S.; Yoon, H.I.; Lee, C.T.; Choi, Y.J.; Kim, H-R.; Kim, C.H.; Lee, J.C. Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer, 2011, 73(2), 176-182.
[http://dx.doi.org/10.1016/j.lungcan.2010.11.011] [PMID: 21168239]
[25]
Shang, Y.; Cai, X.; Fan, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr. Cancer Drug Targets, 2013, 13(9), 915-929.
[http://dx.doi.org/10.2174/15680096113136660097] [PMID: 24168191]
[26]
Lin, Z. L.; Sun, S.; Xie, S.; Zhang, S.; Fan, Q.; Li, W.; Chen, G.; Pan, W.; Wang, B.; Weng, Z.; Zhang, B.; Liu, J. Chemotherapy-induced long non-coding RNA 1 promotes metastasis and chemo-resistance of TSCC via the Wnt/beta-catenin signaling pathway. Mol. Ther., 2018, 26(6), 1494-1508.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.002] [PMID: 29699939]
[27]
Sesumi, Y.; Suda, K.; Mizuuchi, H.; Kobayashi, Y.; Sato, K.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer, 2017, 104, 85-90.
[http://dx.doi.org/10.1016/j.lungcan.2016.12.012] [PMID: 28213007]
[28]
Luise, C.; Capra, M.; Donzelli, M.; Mazzarol, G.; Jodice, M.G.; Nuciforo, P.; Viale, G.; Di Fiore, P.P.; Confalonieri, S. An atlas of altered expression of deubiquitinating enzymes in human cancer. PLoS One, 2011, 6(1) e15891
[http://dx.doi.org/10.1371/journal.pone.0015891] [PMID: 21283576]
[29]
Du, T.; Li, H.; Fan, Y.; Yuan, L.; Guo, X.; Zhu, Q.; Yao, Y.; Li, X.; Liu, C.; Yu, X.; Liu, Z.; Cui, C.P.; Han, C.; Zhang, L. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat. Commun., 2019, 10(1), 2914.
[http://dx.doi.org/10.1038/s41467-019-10824-7] [PMID: 31266968]
[30]
Zhang, J.; Zhang, P.; Wei, Y.; Piao, H.L.; Wang, W.; Maddika, S.; Wang, M.; Chen, D.; Sun, Y.; Hung, M.C.; Chen, J.; Ma, L. Deubiquitylation and stabilization of PTEN by USP13. Nat. Cell Biol., 2013, 15(12), 1486-1494.
[http://dx.doi.org/10.1038/ncb2874] [PMID: 24270891]
[31]
Diefenbacher, M.E.; Popov, N.; Blake, S.M.; Schülein-Völk, C.; Nye, E.; Spencer-Dene, B.; Jaenicke, L.A.; Eilers, M.; Behrens, A. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest., 2014, 124(8), 3407-3418.
[http://dx.doi.org/10.1172/JCI73733] [PMID: 24960159]
[32]
Zhou, A.; Lin, K.; Zhang, S.; Ma, L.; Xue, J.; Morris, S.A.; Aldape, K.D.; Huang, S. Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep., 2017, 18(8), 1318-1330.
[http://dx.doi.org/10.15252/embr.201643124] [PMID: 28623188]
[33]
Cetkovská, K.; Šustová, H.; Uldrijan, S. Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity. Sci. Rep., 2017, 7, 43180.
[http://dx.doi.org/10.1038/srep43180] [PMID: 28233861]
[34]
Shu, T.; Li, Y.; Wu, X.; Li, B.; Liu, Z. Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to platinum treatment. Cancer Lett., 2017, 411, 65-73.
[http://dx.doi.org/10.1016/j.canlet.2017.09.048] [PMID: 28989055]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy