Review Article

神经毒性有机磷化合物抑制乙酰胆碱酯酶活化剂的结构及评价研究进展

卷 28, 期 7, 2021

发表于: 25 April, 2020

页: [1422 - 1442] 页: 21

弟呕挨: 10.2174/0929867327666200425213215

价格: $65

摘要

背景:神经毒性化学战剂可被归类为对人类最危险的化学物质。这些药物中最有效的是能够限制乙酰胆碱酯酶(AChE)的有机磷酸酯(OPs),而乙酰胆碱酯酶(AChE)则控制神经冲动的传递。当AChE被OPs抑制时,其重新活化通常可以通过阳离子肟来进行。然而,直到今天,还没有开发出一种通用的防御剂,其对AChE的完全有效的再活化活性被许多现有的神经毒性OPs所抑制。因此,在治疗被OPs所致毒的人之前,有必要确定用于污染的神经毒性化合物,以便选择最有效的肟。不幸的是,该任务通常需要相对较长的时间,从而增加了死亡的可能性。阳离子肟也表现出有限的渗透血脑屏障(BBB)的能力。这一事实损害了他们重新激活神经系统内部AChE的能力。 方法:我们对当今科学文献中有关OPs的数据进行了全面搜索,以涵盖开发针对这些化合物的有效解毒剂的研究仍面临的所有主要弊端。 结果:因此,本篇有关神经毒性OPs和AChE激活的评论为新药的开发提供了见识。最期待的防御剂是一种无毒性的分子,可以有效地激活被所有神经毒性OPs抑制的AChE。 结论:要开发这些新试剂,应应用各种科学研究领域,尤其是理论程序,如计算科学(计算机模拟,对接和动力学),有机合成,光谱学方法,生物学,生化和生物物理信息,药物化学,药理学和毒理学,是必要的。

关键词: 乙酰胆碱酯酶,活化剂,神经毒性有机磷化合物,肟,作战剂,化学防御作用。

[1]
Busl, K.M.; Bleck, T.P. Treatment of neuroterrorism. Neurotherapeutics, 2012, 9(1), 139-157.
[http://dx.doi.org/10.1007/s13311-011-0097-2] [PMID: 22227729]
[2]
Marrs, T.C.; Maynard, R.L.; Sidell, F.R. Chemical Warfare Agents : Toxicology and Treatment, 2nd ed; Wiley & Sons: New York, 2007.
[3]
Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: a review. J. Braz. Chem. Soc., 2009, 20, 407-428.
[http://dx.doi.org/10.1590/S0103-50532009000300003]
[4]
Hilmas, C.J.; Smart, J.K.; Hill, B.A. History of Chemical Warfare.Medical Aspects of Chemical Warfare; Martha, K., Ed.; Washington, DC, 2008, pp. 9-76.
[5]
Patočka, J.; Fusek, J. Chemical agents and chemical terrorism. Cent. Eur. J. Public Health, 2004, 12, S75-S77.
[PMID: 15141987]
[6]
Ganesan, K.; Raza, S.K.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci., 2010, 2(3), 166-178.
[http://dx.doi.org/10.4103/0975-7406.68498] [PMID: 21829312]
[7]
Pitschmann, V. Overall view of chemical and biochemical weapons. Toxins (Basel), 2014, 6(6), 1761-1784.
[http://dx.doi.org/10.3390/toxins6061761] [PMID: 24902078]
[8]
Schmaltz, F. Neurosciences and research on chemical weapons of mass destruction in Nazi Germany. J. Hist. Neurosci., 2006, 15(3), 186-209.
[http://dx.doi.org/10.1080/09647040600658229] [PMID: 16887760]
[9]
López-Muñoz, F.; Alamo, C.; Guerra, J.A.; García-García, P. The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany. Rev. Neurol., 2008, 47(2), 99-106.
[PMID: 18623009]
[10]
Ghosh, R.; Newman, J.F. A new group of organophosphorus pesticides. Chem. Ind., 1955, 5, 118-119.
[11]
Mirzayanov, V.S. State Secrets: An Insider’s Chronicle of the Russian Chemical Weapons Program; Outskirts Press, Inc.: Denver, Colorado, 2009.
[12]
Patocka, J. Novichok agents-mysterious poisonous substances from the cold war period. Mil. Med. Sci. Lett., 2018, 28(2), 92-94.
[http://dx.doi.org/10.31482/mmsl.2018.012]
[13]
Vásárhelyi, G.; Földi, L. History of Russia’s chemical weapons. Acad. Appl. Res. Mil. Sci., 2007, 6(1), 135-146.
[14]
Franca, T.C.C.; Kitagawa, D.A.S.; Cavalcante, S.F.A.; da Silva, J.A.V.; Nepovimova, E.; Kuca, K. Novichoks: the dangerous fourth generation of chemical weapons. Int. J. Mol. Sci., 2019, 20(5), 1222.
[http://dx.doi.org/10.3390/ijms20051222] [PMID: 30862059]
[15]
Nepovimova, E.; Kuca, K. Chemical warfare agent NOVICHOK - mini-review of available data. Food Chem. Toxicol., 2018, 121, 343-350.
[http://dx.doi.org/10.1016/j.fct.2018.09.015] [PMID: 30213549]
[16]
Stuart, J.A.; Ursano, R.J.; Fullerton, C.S.; Norwood, A.E.; Murray, K. Belief in exposure to terrorist agents: reported exposure to nerve or mustard gas by Gulf War veterans. J. Nerv. Ment. Dis., 2003, 191(7), 431-436.
[http://dx.doi.org/10.1097/01.NMD.0000081634.28356.6B] [PMID: 12891089]
[17]
Macilwain, C. Study proves Iraq used nerve gas. Nature, 1993, 363(6424), 3.
[http://dx.doi.org/10.1038/363003b0] [PMID: 8479533]
[18]
Kelle, A. The third review conference of the chemical weapons convention and beyond: key themes and the prospects of incremental change. International. Affairs., 2013, 89(1), 143-158.
[http://dx.doi.org/10.1111/1468-2346.12009]
[19]
Morita, H.; Yanagisawa, N.; Nakajima, T.; Shimizu, M.; Hirabayashi, H.; Okudera, H.; Nohara, M.; Midorikawa, Y.; Mimura, S. Sarin poisoning in Matsumoto, Japan. Lancet, 1995, 346(8970), 290-293.
[http://dx.doi.org/10.1016/S0140-6736(95)92170-2] [PMID: 7630252]
[20]
Szinicz, L. History of chemical and biological warfare agents. Toxicology, 2005, 214(3), 167-181.
[http://dx.doi.org/10.1016/j.tox.2005.06.011] [PMID: 16111798]
[21]
Okumura, T.; Takasu, N.; Ishimatsu, S.; Miyanoki, S.; Mitsuhashi, A.; Kumada, K.; Tanaka, K.; Hinohara, S. Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med., 1996, 28(2), 129-135.
[http://dx.doi.org/10.1016/S0196-0644(96)70052-5] [PMID: 8759575]
[22]
Holstege, C.P.; Kirk, M.; Sidell, F.R. Chemical warfare. Nerve agent poisoning. Crit. Care Clin., 1997, 13(4), 923-942.
[http://dx.doi.org/10.1016/S0749-0704(05)70374-2] [PMID: 9330846]
[23]
Tu, A.T. Overview of sarin terrorist attacks in Japan. ACS Symposium Series, 1999, 745, pp. 304-317.
[http://dx.doi.org/10.1021/bk-2000-0745.ch020]
[24]
Nikitin, M.B.D.; Kerr, P.K.; Feickert, A. Syria’s Chemical Weapons: Issues for Congress; Congressional Research Service: Washington, DC, 2013.
[25]
Koblentz, G.D. Chemical-weapon use in Syria: atrocities, attribution and accountability. The Nonproliferative Review, 2020, 26(5), 575-598.
[http://dx.doi.org/10.1080/10736700.2019.1718336]
[26]
Nepovimova, E.; Kuca, K. The history of poisoning: from ancient times until modern ERA. Arch. Toxicol., 2019, 93(1), 11-24.
[http://dx.doi.org/10.1007/s00204-018-2290-0] [PMID: 30132046]
[27]
Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food- a review. J. Food Sci. Technol., 2014, 51(2), 201-220.
[http://dx.doi.org/10.1007/s13197-011-0499-5] [PMID: 24493878]
[28]
Jokanović, M.; Kosanović, M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ. Toxicol. Pharmacol., 2010, 29(3), 195-201.
[http://dx.doi.org/10.1016/j.etap.2010.01.006] [PMID: 21787602]
[29]
Eyer, P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev., 2003, 22(3), 165-190.
[http://dx.doi.org/10.2165/00139709-200322030-00004] [PMID: 15181665]
[30]
Yamashita, M.; Yamashita, M.; Tanaka, J.; Ando, Y. Human mortality in organophosphate poisonings. Vet. Hum. Toxicol., 1997, 39(2), 84-85.
[PMID: 9080632]
[31]
Mehrotra, K.; Pradhan, B. Children Buried at Indian School as Pesticide is Blamed 2013. Available at: https://www.bloomberg.com/news/articles/2013-07-17/pesticide-laced-school-lunches-blamed-for-22-child-deaths (Accessed: Feb 23 2020
[32]
Kaufer, D.; Friedman, A.; Seidman, S.; Soreq, H. Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact., 1999, 119-120, 349-360.
[http://dx.doi.org/10.1016/S0009-2797(99)00046-0] [PMID: 10421471]
[33]
Silman, I.; Sussman, J.L. Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 2008, 175(1-3), 3-10.
[http://dx.doi.org/10.1016/j.cbi.2008.05.035] [PMID: 18586019]
[34]
Marrs, T.C.; Maynard, R.L. Neurotransmission systems as targets for toxicants: a review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[http://dx.doi.org/10.1007/s10565-013-9259-9] [PMID: 24036955]
[35]
Lydic, R.; Baghdoyan, H.A.; Lorinc, Z. Microdialysis of cat pons reveals enhanced acetylcholine release during state-dependent respiratory depression. Am. J. Physiol., 1991, 261(3 Pt 2), R766-R770.
[http://dx.doi.org/10.1152/ajpregu.1991.261.3.r766] [PMID: 1887963]
[36]
Cavalcante, S.F.A.; Simas, A.B.C.; Barcellos, M.C.; de Oliveira, V.G.M.; Sousa, R.B.; Cabral, P.A.M.; Kuča, K.; França, T.C.C. Acetylcholinesterase: the “Hub” for neurodegenerative diseases and chemical weapons convention. Biomolecules, 10(3), 414.
[http://dx.doi.org/10.3390/biom10030414] [PMID: 32155996]
[37]
Worek, F.; Aurbek, N.; Wetherell, J.; Pearce, P.; Mann, T.; Thiermann, H. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds: pig versus minipig acetylcholinesterase. Toxicology, 2008, 244(1), 35-41.
[http://dx.doi.org/10.1016/j.tox.2007.10.021] [PMID: 18054823]
[38]
Sirin, G.S.; Zhou, Y.; Lior-Hoffmann, L.; Wang, S.; Zhang, Y. Aging mechanism of soman inhibited acetylcholinesterase. J. Phys. Chem. B, 2012, 116(40), 12199-12207.
[http://dx.doi.org/10.1021/jp307790v] [PMID: 22984913]
[39]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[40]
Chambers, J.E.; Chambers, H.W.; Meek, E.C.; Pringle, R.B. Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chem. Biol. Interact., 2013, 203(1), 135-138.
[http://dx.doi.org/10.1016/j.cbi.2012.10.017] [PMID: 23123249]
[41]
Petroianu, G.A.; Lorke, D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem., 2008, 8(13), 1328-1342.
[http://dx.doi.org/10.2174/138955708786369555] [PMID: 18991751]
[42]
Meek, E.C.; Chambers, H.W.; Coban, A.; Funck, K.E.; Pringle, R.B.; Ross, M.K.; Chambers, J.E. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol. Sci., 2012, 126(2), 525-533.
[http://dx.doi.org/10.1093/toxsci/kfs013] [PMID: 22247004]
[43]
Karasova, J.Z.; Kuca, K.; Jun, D.; Bajgar, J. Using the Ellman method for in vivo testing of cholinesterase activity. Chemické. Listy, 2010, 104(1), 46-50.
[44]
Worek, F.; Thiermann, H. Reactivation of organophosphate-inhibited human acetylcholinesterase by isonitrosoacetone (MINA): a kinetic analysis. Chem. Biol. Interact., 2011, 194(2-3), 91-96.
[http://dx.doi.org/10.1016/j.cbi.2011.09.001] [PMID: 21930118]
[45]
Ribeiro, T.S.; Prates, A.; Alves, S.R.; Oliveira-Silva, J.J.; Riehl, C.A.S.; Figueroa-Villar, J.D. The effect of neutral oximes on the reactivation of human acetylcholinesterase inhibited with paraoxon. J. Braz. Chem. Soc., 2012, 23, 1216-1225.
[http://dx.doi.org/10.1590/S0103-50532012000700004]
[46]
Kuca, K.; Musilova, L.; Palecek, J.; Cirkva, V.; Paar, M.; Musilek, K.; Hrabinova, M.; Pohanka, M.; Karasova, J.Z.; Jun, D. Novel bisquaternary oximes-reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon. Molecules, 2009, 14(12), 4915-4921.
[http://dx.doi.org/10.3390/molecules14124915] [PMID: 20032868]
[47]
Kuca, K.; Juna, D.; Musilek, K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem., 2006, 6(3), 269-277.
[http://dx.doi.org/10.2174/138955706776073510] [PMID: 16515465]
[48]
Jokanović, M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr. Top. Med. Chem., 2012, 12(16), 1775-1789.
[http://dx.doi.org/10.2174/1568026611209061775] [PMID: 23030612]
[49]
Musilek, K.; Komloova, M.; Holas, O.; Horova, A.; Pohanka, M.; Gunn-Moore, F.; Dohnal, V.; Dolezal, M.; Kuca, K. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-preparation, in vitro screening and molecular docking. Bioorg. Med. Chem., 2011, 19(2), 754-762.
[http://dx.doi.org/10.1016/j.bmc.2010.12.021] [PMID: 21215642]
[50]
Karade, H.N.; Valiveti, A.K.; Acharya, J.; Kaushik, M.P. Synthesis and in vitro evaluation of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide derivatives as reactivators against sarin and VX inhibited human acetylcholinesterase (hAChE). Bioorg. Med. Chem., 2014, 22(9), 2684-2691.
[http://dx.doi.org/10.1016/j.bmc.2014.03.023] [PMID: 24721830]
[51]
McHardy, S.F.; Bohmann, J.A.; Corbett, M.R.; Campos, B.; Tidwell, M.W.; Thompson, P.M.; Bemben, C.J.; Menchaca, T.A.; Reeves, T.E.; Cantrell, W.R. Jr.; Bauta, W.E.; Lopez, A.; Maxwell, D.M.; Brecht, K.M.; Sweeney, R.E.; McDonough, J. Design, synthesis and characterization of novel, nonquaternary reactivators of GF-inhibited human acetylcholinesterase. Bioorg. Med. Chem. Lett., 2014, 24(7), 1711-1714.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.049] [PMID: 24630558]
[52]
Renou, J.; Loiodice, M.; Arboléas, M.; Baati, R.; Jean, L.; Nachon, F.; Renard, P.Y. Tryptoline-3-hydroxy-pyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Chem. Commun. (Camb.), 2014, 50(30), 3947-3950.
[http://dx.doi.org/10.1039/C4CC00561A] [PMID: 24599312]
[53]
Zemek, F.; Zdarova, J.K.; Sepsova, V.; Kuca, K. Acetylcholinesterase reactivators (HI-6, obidoxime, trimedoxime, K027, K075, K127, K203, K282): structural evaluation of human serum albumin binding and absorption kinetics. Int. J. Mol. Sci., 2013, 14(8), 16076-16086.
[http://dx.doi.org/10.3390/ijms140816076] [PMID: 23917882]
[54]
Musilek, K.; Holas, O.; Hambalek, J.; Kuca, K.; Jun, D.; Dohnal, V.; Dolezal, M. Synthesis of bispyridinium compounds bearing propane linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. Lett. Org. Chem., 2006, 3(11), 831-835.
[http://dx.doi.org/10.2174/157017806779117012]
[55]
Kovarik, Z.; Maček, N.; Sit, R.K.; Radić, Z.; Fokin, V.V.; Barry Sharpless, K.; Taylor, P. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Chem. Biol. Interact., 2013, 203(1), 77-80.
[http://dx.doi.org/10.1016/j.cbi.2012.08.019] [PMID: 22960624]
[56]
Mercey, G.; Renou, J.; Verdelet, T.; Kliachyna, M.; Baati, R.; Gillon, E.; Arboléas, M.; Loiodice, M.; Nachon, F.; Jean, L.; Renard, P.Y. Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient uncharged reactivators for the dephosphylation of inhibited human acetylcholinesterase. J. Med. Chem., 2012, 55(23), 10791-10795.
[http://dx.doi.org/10.1021/jm3015519] [PMID: 23148598]
[57]
Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res., 2012, 45(5), 756-766.
[http://dx.doi.org/10.1021/ar2002864] [PMID: 22360473]
[58]
Kalisiak, J.; Ralph, E.C.; Cashman, J.R. Nonquaternary reactivators for organophosphate-inhibited cholinesterases. J. Med. Chem., 2012, 55(1), 465-474.
[http://dx.doi.org/10.1021/jm201364d] [PMID: 22206546]
[59]
Žunec, S.; Radić, B.; Kuča, K.; Musilek, K.; Lucić Vrdoljak, A. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Arh. Hig. Rada Toksikol., 2015, 66(2), 129-134.
[http://dx.doi.org/10.1515/aiht-2015-66-2623] [PMID: 26110474]
[60]
Antonijevic, E.; Musilek, K.; Kuca, K.; Djukic-Cosic, D.; Vucinic, S.; Antonijevic, B. Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor. Neurotoxicology, 2016, 55, 33-39.
[http://dx.doi.org/10.1016/j.neuro.2016.05.006] [PMID: 27177985]
[61]
Chambers, J.E.; Chambers, H.W.; Funck, K.E.; Meek, E.C.; Pringle, R.B.; Ross, M.K. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chem. Biol. Interact.,, 2016, 259(Pt B), 154-159.
[http://dx.doi.org/10.1016/j.cbi.2016.07.004] [PMID: 27387540]
[62]
Gorecki, L.; Soukup, O.; Kucera, T.; Malinak, D.; Jun, D.; Kuca, K.; Musilek, K.; Korabecny, J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch. Toxicol., 2019, 93(3), 673-691.
[http://dx.doi.org/10.1007/s00204-018-2377-7] [PMID: 30564897]
[63]
Kim, J.; Malpani, Y.R.; Lee, J.; Shin, J.S.; Han, S.B.; Jung, Y.S. Novel tacrine-pyridinium hybrid reactivators of organophosphorus-inhibited acetylcholinesterase: synthesis, molecular docking, and in vitro reactivation study. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3784-3786.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.006] [PMID: 30301674]
[64]
Kuca, K.; Musilek, K.; Jun, D.; Zdarova-Karasova, J.; Nepovimova, E.; Soukup, O.; Hrabinova, M.; Mikler, J.; Franca, T.C.C.; Da Cunha, E.F.F.; De Castro, A.A.; Valis, M.; Ramalho, T.C. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol., 2018, 19(1), 8.
[http://dx.doi.org/10.1186/s40360-018-0196-3] [PMID: 29467029]
[65]
Musilek, K.; Holas, O.; Kuca, K.; Jun, D.; Dohnal, V.; Opletalova, V.; Dolezal, M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 70-76.
[http://dx.doi.org/10.1080/14756360701383981] [PMID: 18341256]
[66]
Jaćević, V.; Nepovimova, E.; Kuča, K. Interspecies and intergender differences in acute toxicity of K-oximes drug candidates. Chem. Biol. Interact., 2019, 308, 312-316.
[http://dx.doi.org/10.1016/j.cbi.2019.05.035] [PMID: 31153983]
[67]
Lorke, D.E.; Petroianu, G.A. The experimental oxime K027-a promising protector from organophosphate pesticide poisoning. A review comparing K027, K048, pralidoxime and obidoxime. Front. Neurosci., 2019, 13, 427.
[http://dx.doi.org/10.3389/fnins.2019.00427] [PMID: 31191210]
[68]
Sit, R.K.; Fokin, V.V.; Amitai, G.; Sharpless, K.B.; Taylor, P.; Radić, Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J. Med. Chem., 2014, 57(4), 1378-1389.
[http://dx.doi.org/10.1021/jm401650z] [PMID: 24571195]
[69]
Winter, M.; Wille, T.; Musilek, K.; Kuca, K.; Thiermann, H.; Worek, F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett., 2016, 244, 136-142.
[http://dx.doi.org/10.1016/j.toxlet.2015.07.007] [PMID: 26210933]
[70]
Kuca, K.; Musilek, K.; Jun, D.; Nepovimova, E.; Soukup, O.; Korabecny, J.; França, T.C.C.; de Castro, A.A.; Krejcar, O.; da Cunha, E.F.F.; Ramalho, T.C. Oxime K074 - in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev., 2018, 39(2), 157-166.
[http://dx.doi.org/10.1080/15569543.2018.1485702]
[71]
Kuca, K.; Musilek, K.; Jun, D.; Pejchal, J.; Krejcar, O.; Penhaker, M.; Wu, Q.; Lopes, R.O.; Ramalho, T.C.; Franca, T.C.C.; Nepovimova, E.; Soukup, O. Oxime K033-reactivation activity of cholinesterases inhibited by various nerve agents and organophosphorus pesticides. Lett. Drug Des. Discov., 2018, 15(11), 1124-1130.
[http://dx.doi.org/10.2174/1570164615666180713112238]
[72]
Kuca, K.; Nepovimova, E.; Wu, Q.; de Souza, F.R.; Ramalho, T. de C.; Franca, T.C.C.; Musilek, K. Experimental hydrophilic reactivator: bisoxime with three positive charges. Chem. Pap., 2019, 73, 777-782.
[http://dx.doi.org/10.1007/s11696-018-0612-6]
[73]
Karasova, J.Z.; Chladek, J.; Hroch, M.; Josef, F.; Hnidkova, D.; Kuca, K. Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. J. Appl. Toxicol., 2013, 33(1), 18-23.
[http://dx.doi.org/10.1002/jat.1699] [PMID: 21717485]
[74]
Bhattacharjee, A.K.; Kuca, K.; Musilek, K.; Gordon, R.K. An in silico stereo-electronic comparison of conventional pyridinium oximes and k-oximes for organophosphate (OP) poisoning. Med. Chem., 2012, 8(2), 230-245.
[http://dx.doi.org/10.2174/157340612800493700] [PMID: 22385173]
[75]
Musilek, K.; Dolezal, M.; Gunn-Moore, F.; Kuca, K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev., 2011, 31(4), 548-575.
[http://dx.doi.org/10.1002/med.20192] [PMID: 20027669]
[76]
Louise-Leriche, L.; Pǎunescu, E.; Saint-André, G.; Baati, R.; Romieu, A.; Wagner, A.; Renard, P.Y. A HTS assay for the detection of organophosphorus nerve agent scavengers. Chemistry, 2010, 16(11), 3510-3523.
[http://dx.doi.org/10.1002/chem.200902986] [PMID: 20143367]
[77]
Gilbert, G.; Wagner-Jauregg, T.; Steinberg, G.M. Hydroxamic acids: relationship between structure and ability to reactivate phosphonate-inhibited acetylcholinesterase. Arch. Biochem. Biophys., 1961, 93, 469-475.
[http://dx.doi.org/10.1016/S0003-9861(61)80038-6] [PMID: 13705238]
[78]
Renou, J.; Mercey, G.; Verdelet, T.; Păunescu, E.; Gillon, E.; Arboléas, M.; Loiodice, M.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Syntheses and in vitro evaluations of uncharged reactivators for human acetylcholinesterase inhibited by organophosphorus nerve agents. Chem. Biol. Interact., 2013, 203(1), 81-84.
[http://dx.doi.org/10.1016/j.cbi.2012.09.023] [PMID: 23111374]
[79]
Gerlits, O.; Kong, X.; Cheng, X.; Wymore, T.; Blumenthal, D.K.; Taylor, P.; Radić, Z.; Kovalevsky, A. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. J. Biol. Chem., 2019, 294(27), 10607-10618.
[http://dx.doi.org/10.1074/jbc.RA119.008725] [PMID: 31138650]
[80]
Cochran, R.; Kalisiak, J.; Küçükkilinç, T.; Radić, Z.; Garcia, E.; Zhang, L.; Ho, K.Y.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J. Biol. Chem., 2011, 286(34), 29718-29724.
[http://dx.doi.org/10.1074/jbc.M111.264739] [PMID: 21730071]
[81]
Radić, Z.; Sit, R.K.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2012, 287(15), 11798-11809.
[http://dx.doi.org/10.1074/jbc.M111.333732] [PMID: 22343626]
[82]
Sit, R.K.; Radić, Z.; Gerardi, V.; Zhang, L.; Garcia, E.; Katalinić, M.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2011, 286(22), 19422-19430.
[http://dx.doi.org/10.1074/jbc.M111.230656] [PMID: 21464125]
[83]
Gonçalves, A.D.S.; França, T.C.C.; Figueroa-Villar, J.D.; Pascutti, P.G. Molecular dynamics simulations and QM/MM studies of the reactivation by 2-PAM of tabun inhibited human acethylcolinesterase. J. Braz. Chem. Soc., 2011, 22(1), 155-165.
[http://dx.doi.org/10.1590/S0103-50532011000100021]
[84]
Cuya, T.; Gonçalves, A.D.S.; da Silva, J.A.V.; Ramalho, T.C.; Kuca, K.C.C.; França, T. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study. J. Biomol. Struct. Dyn., 2018, 36(13), 3444-3452.
[http://dx.doi.org/10.1080/07391102.2017.1389307] [PMID: 29019446]
[85]
da Silva Gonçalves, A.; França, T.C.C.; Caetano, M.S.; Ramalho, T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn., 2014, 32(2), 301-307.
[http://dx.doi.org/10.1080/07391102.2013.765361] [PMID: 23527625]
[86]
Matos, K.S.; da Cunha, E.F.F.; Gonçalves, A.S.; Wilter, A.; Kuča, K.; França, T.C.C.; Ramalho, T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans? J. Biomol. Struct. Dyn., 2012, 30(5), 546-558.
[http://dx.doi.org/10.1080/07391102.2012.687521] [PMID: 22731788]
[87]
da Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; França, T.C.S. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: a near attack conformation approach. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1018-1029.
[http://dx.doi.org/10.1080/14756366.2019.1609953] [PMID: 31074292]
[88]
da Silva, J.A.V.; Pereira, A.F.; LaPlante, S.R.; Kuca, K.; Ramalho, T.C.; França, T.C.C. Reactivation of VX-inhibited human acetylcholinesterase by deprotonated pralidoxime. A complementary quantum mechanical study. Biomolecules, 2020, 10(2), 192.
[http://dx.doi.org/10.3390/biom10020192] [PMID: 32012780]
[89]
da Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; França, T.C.C. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem. Biol. Interact., 2019, 307, 195-205.
[http://dx.doi.org/10.1016/j.cbi.2019.05.019] [PMID: 31121152]
[90]
de Lima, W.E.A.; Francisco, A.; da Cunha, E.F.F.; Radic, Z.; Taylor, P.; França, T.C.C.; Ramalho, T.C. Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. J. Biomol. Struct. Dyn., 2017, 35(6), 1272-1282.
[http://dx.doi.org/10.1080/07391102.2016.1178173] [PMID: 27125569]
[91]
Delfino, R.T.; Figueroa-Villar, J.D. Nucleophilic reactivation of sarin-inhibited acetylcholinesterase: a molecular modeling study. J. Phys. Chem. B, 2009, 113(24), 8402-8411.
[http://dx.doi.org/10.1021/jp810686k] [PMID: 19449818]
[92]
Petronilho, E.C.; Rennó, M.N.; Castro, N.G.; da Silva, F.M.R.; Pinto, A.C.; Figueroa-Villar, J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1069-1078.
[http://dx.doi.org/10.3109/14756366.2015.1094468] [PMID: 26558640]
[93]
Petroianu, G.A.; Arafat, K.; Kuča, K.; Kassa, J. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon. J. Appl. Toxicol., 2006, 26(1), 64-71.
[http://dx.doi.org/10.1002/jat.1108] [PMID: 16193529]
[94]
Soukup, O.; Jun, D.; Tobin, G.; Kuca, K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Arch. Toxicol., 2013, 87(4), 711-719.
[http://dx.doi.org/10.1007/s00204-012-0977-1] [PMID: 23179755]
[95]
Luo, C.; Tong, M.; Maxwell, D.M.; Saxena, A. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases. Chem. Biol. Interact., 2008, 175(1-3), 261-266.
[http://dx.doi.org/10.1016/j.cbi.2008.04.034] [PMID: 18555982]
[96]
Kassa, J.; Karasova, J.; Bajgar, J.; Kuca, K.; Musilek, K.; Kopelikova, I. A comparison of the reactivating and therapeutic efficacy of newly developed bispyridinium oximes (K250, K251) with commonly used oximes against tabun in rats and mice. J. Enzyme Inhib. Med. Chem., 2009, 24(4), 1040-1044.
[http://dx.doi.org/10.1080/14756360802608419] [PMID: 19552519]
[97]
Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Kuca, K.; Schmitt, A.; Petroianu, G.A. Efficacy of two new asymmetric bispyridinium oximes (K-27 and K-48) in rats exposed to diisopropylfluorophosphate: comparison with pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6. Toxicol. Mech. Methods, 2009, 19(4), 327-333.
[http://dx.doi.org/10.1080/15376510902798695] [PMID: 19778224]
[98]
Eckert, S.; Eyer, P.; Herkert, N.; Bumm, R.; Weber, G.; Thiermann, H.; Worek, F. Comparison of the oxime-induced reactivation of erythrocyte and muscle acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity. Biochem. Pharmacol., 2008, 75(3), 698-703.
[http://dx.doi.org/10.1016/j.bcp.2007.09.017] [PMID: 17977518]
[99]
Wilhelm, C.M.; Snider, T.H.; Babin, M.C.; Jett, D.A.; Platoff, G.E. Jr.; Yeung, D.T. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol., 2014, 281(3), 254-265.
[http://dx.doi.org/10.1016/j.taap.2014.10.009] [PMID: 25448441]
[100]
Black, R.M.; Read, R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol., 2013, 87(3), 421-437.
[http://dx.doi.org/10.1007/s00204-012-1005-1] [PMID: 23371414]
[101]
Pohanka, M.; Musilek, K.; Kuca, K. Progress of biosensors based on cholinesterase inhibition. Curr. Med. Chem., 2009, 16(14), 1790-1798.
[http://dx.doi.org/10.2174/092986709788186129] [PMID: 19442145]
[102]
Norrrahim, M.N.F.; Razak, M.A.I.A.; Shah, N.A.A.; Kasim, H.; Yusoff, W.Y.W.; Halim, N.A.; Nor, S.A.M.; Jamal, S.H.; Ong, K.K.; Yunus, W.M.Z.W.; Knight, V.F.; Kasim, N.A.M. Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: a review. RSC Advances, 2020, 10, 4465-4489.
[http://dx.doi.org/10.1039/C9RA08599H]
[103]
Voicu, V.A.; Bajgar, J.; Medvedovici, A.; Radulescu, F.S.; Miron, D.S. Pharmacokinetics and pharmacodynamics of some oximes and associated therapeutic consequences: a critical review. J. Appl. Toxicol., 2010, 30(8), 719-729.
[http://dx.doi.org/10.1002/jat.1561] [PMID: 20635332]
[104]
Van Bree, J.B.M.M.; De Boer, A.G.; Danhof, M.; Breimer, D.D. Drug transport across the blood-brain barrier. I. Anatomical and physiological aspects. Pharm. Weekbl. Sci., 1992, 14(5), 305-310.
[http://dx.doi.org/10.1007/bf01977618] [PMID: 1437514]
[105]
Ertl, P.; Bernhard, R.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[106]
Dadparvar, M.; Wagner, S.; Wien, S.; Kufleitner, J.; Worek, F.; von Briesen, H.; Kreuter, J. HI 6 human serum albumin nanoparticles-development and transport over an in vitro blood-brain barrier model. Toxicol. Lett., 2011, 206(1), 60-66.
[http://dx.doi.org/10.1016/j.toxlet.2011.06.027] [PMID: 21726608]
[107]
Banks, W.A. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 629-639.
[http://dx.doi.org/10.1016/j.addr.2011.12.005] [PMID: 22202501]
[108]
Grumetto, L.; Russo, G.; Barbato, F. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM-HPLC: their relationships with data of blood-brain barrier passage. Eur. J. Pharm. Sci., 2014, 65, 139-146.
[http://dx.doi.org/10.1016/j.ejps.2014.09.015] [PMID: 25262853]
[109]
de Souza, F.R.; Garcia, D.R.; Cuya, T.; Pimentel, A.S.; Gonçalves, A.S.; de Alencastro, R.B.; França, T.C.C. Molecular modeling study of uncharged oximes compared to HI-6 and 2-PAM inside human AChE sarin and VX conjugates. ACS Omega, 2020, 5(9), 4490-4500.
[http://dx.doi.org/10.1021/acsomega.9b03737] [PMID: 32175496]
[110]
de Souza, F.R.; Garcia, D.R.; Cuya, T.; Kuca, K.; de Alencastro, R.B.; França, T.C.C. Behavior of uncharged oximes compared to HI6 and 2-PAM in the human AChE-tabun conjugate: a molecular modeling approach. J. Biomol. Struct. Dyn., 2018, 36(6), 1430-1438.
[http://dx.doi.org/10.1080/07391102.2017.1324322] [PMID: 28446076]
[111]
Kitagawa, D.A.S.; Cavalcante, S.F.A.; de Paula, R.L.; Rodrigues, R.B.; Bernardo, L.B.; da Silva, M.C.J.; da Silva, T.N.; Dos-Santos, W.V.; Granjeiro, J.M.; de Almeida, J.S.F.D.; Barcellos, M.C. de A Correa, A.B.; França, T.C.C.; Kuča, K.; Simas, A.B.C. In vitro evaluation of neutral aryloximes as reactivators for Electrophorus eel acetylcholinesterase inhibited by paraoxon. Biomolecules, 2019, 9(10), 583.
[http://dx.doi.org/10.3390/biom9100583] [PMID: 31597234]
[112]
de Paula, R.L.; de Almeida, J.S.F.D.; Cavalcante, S.F.A.; Gonçalves, A.S.; Simas, A.B.C.; Franca, T.C.C.; Valis, M.; Kuca, K.; Nepovimova, E.; Granjeiro, J.M. Molecular modeling and in vitro studies of a neutral oxime as a potential reactivator for acetylcholinesterase inhibited by paraoxon. Molecules, 2018, 23(11), 2954.
[http://dx.doi.org/10.3390/molecules23112954] [PMID: 30424582]
[113]
Wei, Z.; Liu, Y.Q.; Wang, S.Z.; Yao, L.; Nie, H.F.; Wang, Y.A.; Liu, X.Y.; Zheng, Z.B.; Li, S. Conjugates of salicylaldoximes and peripheral site ligands: novel efficient nonquaternary reactivators for nerve agent-inhibited acetylcholinesterase. Bioorg. Med. Chem., 2017, 25(16), 4497-4505.
[http://dx.doi.org/10.1016/j.bmc.2017.06.041] [PMID: 28684009]
[114]
Santoni, G.; de Sousa, J.; de la Mora, E.; Dias, J.; Jean, L.; Sussman, J.L.; Silman, I.; Renard, P-Y.; Brown, R.C.D.; Weik, M.; Baati, R.; Nachon, F. Structure-based optimization of nonquaternary reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. J. Med. Chem., 2018, 61(17), 7630-7639.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00592] [PMID: 30125110]
[115]
de Almeida, J.S.F.D.; Guizado, T.R.C.; Guimarães, A.P.; Ramalho, T.C.; Gonçalves, A.S.; de Koning, M.C.; França, T.C.C. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn., 2016, 34(12), 2632-2642.
[http://dx.doi.org/10.1080/07391102.2015.1124807] [PMID: 26612005]
[116]
de Koning, M.C.; Joosen, M.J.A.; Noort, D.; van Zuylen, A.; Tromp, M.C. Peripheral site ligand-oxime conjugates: a novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem., 2011, 19(1), 588-594.
[http://dx.doi.org/10.1016/j.bmc.2010.10.059] [PMID: 21112787]
[117]
de Koning, M.C.; van Grol, M.; Noort, D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol. Lett., 2011, 206(1), 54-59.
[http://dx.doi.org/10.1016/j.toxlet.2011.04.004] [PMID: 21504785]
[118]
de Koning, M.C.; Horn, G.; Worek, F.; van Grol, M. Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2018, 157, 151-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.016] [PMID: 30096649]
[119]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[120]
Worek, F.; Eyer, P.; Thiermann, H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test. Anal., 2012, 4(3-4), 282-291.
[http://dx.doi.org/10.1002/dta.337] [PMID: 21998030]
[121]
Soares, S.F.C.X.; Vieira, A.A.; Delfino, R.T.; Figueroa-Villar, J.D. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg. Med. Chem., 2013, 21(18), 5923-5930.
[http://dx.doi.org/10.1016/j.bmc.2013.05.063] [PMID: 23916150]
[122]
Cardoso, C.L.; Lima, V.V.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Wainer, I.W.; Moaddel, R.; Cass, Q.B. Development and characterization of an immobilized enzyme reactor (IMER) based on human glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. J. Chromatogr. A, 2006, 1120(1-2), 151-157.
[http://dx.doi.org/10.1016/j.chroma.2005.10.063] [PMID: 16297925]
[123]
Kuca, K.; Hrabinova, M.; Soukup, O.; Tobin, G.; Karasova, J.; Pohanka, M. Pralidoxime-the gold standard of acetylcholinesterase reactivators-reactivation in vitro efficacy. Bratisl. Lek Listy, 2010, 111(9), 502-504.
[PMID: 21180265]
[124]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[125]
Wetwitayaklung, P.; Limmatvapirat, C.; Phaechamud, T.; Keokitichai, S. Kinetics of acetylcholinesterase inhibition of Quisqualis Indica Linn. flower extract. Silpakorn Univ. Sci. Technol., 2007, 1(2), 20-28.
[126]
Castro, N.G.; Costa, R.S.; Pimentel, L.S.B.; Danuello, A.; Romeiro, N.C.; Viegas, C., Jr; Barreiro, E.J.; Fraga, C.A.M.; Bolzani, V.S.; Rocha, M.S. CNS-selective noncompetitive cholinesterase inhibitors derived from the natural piperidine alkaloid (-)-spectaline. Eur. J. Pharmacol., 2008, 580(3), 339-349.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.035] [PMID: 18096154]
[127]
Oliveira-Silva, J.J.; Alves, S.R.; Meyer, A.; Perez, F.; Sarcinelli, P.N.; da Costa Mattos, R.C.; Moreira, J.C. Influência de fatores socioeconômicos na contaminação por agrotóxicos, Brasil. Rev. Saude Publica, 2001, 35(2), 130-135.
[http://dx.doi.org/10.1590/S0034-89102001000200005] [PMID: 11359198]
[128]
da Silva, J.I.; de Moraes, M.C.; Vieira, L.C.C.; Corrêa, A.G.; Cass, Q.B.; Cardoso, C.L. Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors. J. Pharm. Biomed. Anal., 2013, 73, 44-52.
[http://dx.doi.org/10.1016/j.jpba.2012.01.026] [PMID: 22391555]
[129]
Schumacher, M.; Camp, S.; Maulet, Y.; Newton, M.; MacPhee-Quigley, K.; Taylor, S.S.; Friedmann, T.; Taylor, P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature, 1986, 319(6052), 407-409.
[http://dx.doi.org/10.1038/319407a0] [PMID: 3753747]
[130]
Artursson, E.; Andersson, P.O.; Akfur, C.; Linusson, A.; Börjegren, S.; Ekström, F. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity. Biochem. Pharmacol., 2013, 85(9), 1389-1397.
[http://dx.doi.org/10.1016/j.bcp.2013.01.016] [PMID: 23376121]
[131]
Ekström, F.; Pang, Y.P.; Boman, M.; Artursson, E.; Akfur, C.; Börjegren, S. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Biochem. Pharmacol., 2006, 72(5), 597-607.
[http://dx.doi.org/10.1016/j.bcp.2006.05.027] [PMID: 16876764]
[132]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[133]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[134]
Berg, L.; Andersson, C.D.; Artursson, E.; Hörnberg, A.; Tunemalm, A.K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 2011, 6(11)e26039
[http://dx.doi.org/10.1371/journal.pone.0026039] [PMID: 22140425]
[135]
Matos, K.S.; Cunha, E.F.F.; Gonçalves, A.S.; Wilter, A.; Kuča, K.; França, T.C.; Ramalho, T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators can mouse data provide new insights into humans? J. Biomol. Struct. Dyn., 2012, 30(5), 546-558.
[http://dx.doi.org/10.1080/07391102.2012.687521] [PMID: 22731788]
[136]
da Silva, J.A.V.; Modesto-Costa, L.; de Koning, M.C.; Borges, I.; França, T.C.C. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation. J. Mol. Struct., 2018, 1152, 311-320.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.058]
[137]
Carletti, E.; Colletier, J.P.; Schopfer, L.M.; Santoni, G.; Masson, P.; Lockridge, O.; Nachon, F.; Weik, M. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chem. Res. Toxicol., 2013, 26(2), 280-289.
[http://dx.doi.org/10.1021/tx3004505] [PMID: 23339663]
[138]
Figueroa-Villar, J.D.; Tinoco, L.W. Spin-lattice relaxation time in drug discovery and design. Curr. Top. Med. Chem., 2009, 9(9), 811-823.
[http://dx.doi.org/10.2174/156802609789207082] [PMID: 19754396]
[139]
Zuiderweg, E.R.P. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry, 2002, 41(1), 1-7.
[http://dx.doi.org/10.1021/bi011870b] [PMID: 11771996]
[140]
Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc., 2001, 123(25), 6108-6117.
[http://dx.doi.org/10.1021/ja0100120] [PMID: 11414845]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy