Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Anticancer Mechanisms of Bioactive Peptides

Author(s): Tsuey Ning Soon, Adeline Yoke Yin Chia, Wei Hsum Yap and Yin-Quan Tang*

Volume 27, Issue 9, 2020

Page: [823 - 830] Pages: 8

DOI: 10.2174/0929866527666200409102747

Price: $65

Abstract

Despite technological advancement, there is no 100% effective treatment against metastatic cancer. Increasing resistance of cancer cells towards chemotherapeutic drugs along with detrimental side effects remained a concern. Thus, the urgency in developing new anticancer agents has been raised. Anticancer peptides have been proven to display potent activity against a wide variety of cancer cells. Several mode of actions describing their cytostatic and cytotoxic effect on cancer cells have been proposed which involves cell surface binding leading to membranolysis or internalization to reach their intracellular target. Understanding the mechanism of action of these anticancer peptides is important in achieving full therapeutic success. In the present article, we discuss the anticancer action of peptides accompanied by the mechanisms underpinning their toxicity to cancer cells.

Keywords: Anticancer peptides, anticancer, antitumor, mechanism of action, cytotoxicity, drug resistance, membranolysis.

Graphical Abstract
[1]
Baudino, T.A. targeted cancer therapy: The next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[2]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[3]
Negahdaripour, M.; Owji, H.; Eslami, M.; Zamani, M.; Vakili, B.; Sabetian, S.; Nezafat, N.; Ghasemi, Y. Selected application of peptide molecules as pharmaceutical agents and in cosmeceuticals. Expert Opin. Biol. Ther., 2019, 19(12), 1275-1287.
[http://dx.doi.org/10.1080/14712598.2019.1652592] [PMID: 31382850]
[4]
Lui, V.C.H.; Lung, S.S.S.; Pu, J.K.S.; Hung, K.N.; Leung, G.K.K. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res., 2010, 30(11), 4515-4524.
[PMID: 21115901]
[5]
Yamada, T.; Das Gupta, T.K.; Beattie, C.W. p28-mediated activation of p53 in G2-M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Res., 2016, 76(8), 2354-2365.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2355] [PMID: 26921335]
[6]
Prezma, T.; Shteinfer, A.; Admoni, L.; Raviv, Z.; Sela, I.; Levi, I.; Shoshan-Barmatz, V. VDAC1-based peptides: Novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis., 2013, 4(9), e809-e809.
[http://dx.doi.org/10.1038/cddis.2013.316] [PMID: 24052077]
[7]
Zhang, L.; Ming, L.; Yu, J. BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist. Updat., 2007, 10(6), 207-217.
[http://dx.doi.org/10.1016/j.drup.2007.08.002] [PMID: 17921043]
[8]
Ma, R.; Mahadevappa, R.; Kwok, H.F. Venom-based peptide therapy: Insights into anti-cancer mechanism. Oncotarget, 2017, 8(59), 100908-100930.
[http://dx.doi.org/10.18632/oncotarget.21740] [PMID: 29246030]
[9]
Valero, J.G.; Sancey, L.; Kucharczak, J.; Guillemin, Y.; Gimenez, D.; Prudent, J.; Gillet, G.; Salgado, J.; Coll, J-L.; Aouacheria, A. Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells. J. Cell Sci., 2011, 124(Pt 4), 556-564.
[http://dx.doi.org/10.1242/jcs.076745] [PMID: 21245196]
[10]
He, B.; Lu, N.; Zhou, Z. Cellular and nuclear degradation during apoptosis. Curr. Opin. Cell Biol., 2009, 21(6), 900-912.
[http://dx.doi.org/10.1016/j.ceb.2009.08.008] [PMID: 19781927]
[11]
Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[12]
Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[13]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[14]
Soldani, C.; Scovassi, A.I. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update. Apoptosis, 2002, 7(4), 321-328.
[http://dx.doi.org/10.1023/A:1016119328968] [PMID: 12101391]
[15]
Riedl, S.J.; Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 897-907.
[http://dx.doi.org/10.1038/nrm1496] [PMID: 15520809]
[16]
Yuan, S.; Akey, C.W. Apoptosome structure, assembly, and procaspase activation. Structure, 2013, 21(4), 501-515.
[http://dx.doi.org/10.1016/j.str.2013.02.024] [PMID: 23561633]
[17]
Callagy, G.M.; Pharoah, P.D.; Pinder, S.E.; Hsu, F.D.; Nielsen, T.O.; Ragaz, J.; Ellis, I.O.; Huntsman, D.; Caldas, C. Bcl-2 is a prognostic marker in breast cancer independently of the Nottingham Prognostic Index. Clin. Cancer Res., 2006, 12(8), 2468-2475.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2719] [PMID: 16638854]
[18]
Ghiotto, F.; Fais, F.; Tenca, C.; Tomati, V.; Morabito, F.; Casciaro, S.; Mumot, A.; Zoppoli, G.; Ciccone, E.; Parodi, S.; Bruno, S. Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic. Cancer Biol. Ther., 2009, 8(3), 263-271.
[http://dx.doi.org/10.4161/cbt.8.3.7424] [PMID: 19164937]
[19]
Kolluri, S.K.; Zhu, X.; Zhou, X.; Lin, B.; Chen, Y.; Sun, K.; Tian, X.; Town, J.; Cao, X.; Lin, F.; Zhai, D.; Kitada, S.; Luciano, F.; O’Donnell, E.; Cao, Y.; He, F.; Lin, J.; Reed, J.C.; Satterthwait, A.C.; Zhang, X.K. A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell, 2008, 14(4), 285-298.
[http://dx.doi.org/10.1016/j.ccr.2008.09.002] [PMID: 18835031]
[20]
Magzoub, M. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J., 2017, 31(5), 2168-2184.
[http://dx.doi.org/10.1096/fj.201601173R] [PMID: 28183803]
[21]
Wodlej, C.; Riedl, S.; Rinner, B.; Leber, R.; Drechsler, C.; Voelker, D.R.; Choi, J-Y.; Lohner, K.; Zweytick, D. Interaction of two antitumor peptides with membrane lipids - Influence of phosphatidylserine and cholesterol on specificity for melanoma cells. PLoS One, 2019, 14(1), e0211187.
[http://dx.doi.org/10.1371/journal.pone.0211187] [PMID: 30682171]
[22]
Hsu, J-C.; Lin, L-C.; Tzen, J.T.C.; Chen, J-Y. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides, 2011, 32(6), 1110-1116.
[http://dx.doi.org/10.1016/j.peptides.2011.04.024] [PMID: 21557975]
[23]
Rapaport, D.; Shai, Y. Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J. Biol. Chem., 1991, 266(35), 23769-23775.
[PMID: 1748653]
[24]
Kolusheva, S.; Lecht, S.; Derazon, Y.; Jelinek, R.; Lazarovici, P. Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides, 2008, 29(9), 1620-1625.
[http://dx.doi.org/10.1016/j.peptides.2008.05.012] [PMID: 18584915]
[25]
Vad, B.S.; Bertelsen, K.; Johansen, C.H.; Pedersen, J.M.; Skrydstrup, T.; Nielsen, N.C.; Otzen, D.E. Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption. Biophys. J., 2010, 98(4), 576-585.
[http://dx.doi.org/10.1016/j.bpj.2009.08.063] [PMID: 20159154]
[26]
Rapaport, D.; Shai, Y. Aggregation and organization of pardaxin in phospholipid membranes. A fluorescence energy transfer study. J. Biol. Chem., 1992, 267(10), 6502-6509.
[PMID: 1551864]
[27]
Cranfield, C.G.; Henriques, S.T.; Martinac, B.; Duckworth, P.; Craik, D.J.; Cornell, B. Kalata B1 and Kalata B2 have a surfactant-like activity in phosphatidylethanolomine-containing lipid membranes. Langmuir, 2017, 33(26), 6630-6637.
[http://dx.doi.org/10.1021/acs.langmuir.7b01642] [PMID: 28605904]
[28]
Troeira Henriques, S.; Huang, Y-H.; Chaousis, S.; Wang, C.K.; Craik, D.J. Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting. ChemBioChem, 2014, 15(13), 1956-1965.
[http://dx.doi.org/10.1002/cbic.201402144] [PMID: 25099014]
[29]
Henriques, S.T.; Huang, Y-H.; Rosengren, K.J.; Franquelim, H.G.; Carvalho, F.A.; Johnson, A.; Sonza, S.; Tachedjian, G.; Castanho, M.A.R.B.; Daly, N.L.; Craik, D.J. Decoding the membrane activity of the cyclotide kalata B1: The importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem., 2011, 286(27), 24231-24241.
[http://dx.doi.org/10.1074/jbc.M111.253393] [PMID: 21576247]
[30]
Bizzarri, A.R.; Moscetti, I.; Cannistraro, S. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(2), 342-350.
[http://dx.doi.org/10.1016/j.bbagen.2018.11.003] [PMID: 30419285]
[31]
Santini, S.; Bizzarri, A.R.; Cannistraro, S. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin. J. Mol. Recognit., 2011, 24(6), 1043-1055.
[http://dx.doi.org/10.1002/jmr.1153] [PMID: 22038811]
[32]
Ma, J.; Hu, Y.; Guo, M.; Huang, Z.; Li, W.; Wu, Y. hERG potassium channel blockage by scorpion toxin BmKKx2 enhances erythroid differentiation of human leukemia cells K562. PLoS One, 2013, 8(12), e84903.
[http://dx.doi.org/10.1371/journal.pone.0084903] [PMID: 24386436]
[33]
Asher, V.; Warren, A.; Shaw, R.; Sowter, H.; Bali, A.; Khan, R. The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int., 2011, 11(1), 6.
[http://dx.doi.org/10.1186/1475-2867-11-6] [PMID: 21392380]
[34]
Fu, S.; Hirte, H.; Welch, S.; Ilenchuk, T.T.; Lutes, T.; Rice, C.; Fields, N.; Nemet, A.; Dugourd, D.; Piha-Paul, S.; Subbiah, V.; Liu, L.; Gong, J.; Hong, D.; Stewart, J.M. First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(3), 324-333.
[http://dx.doi.org/10.1007/s10637-017-0438-z] [PMID: 28150073]
[35]
Bowen, C.V.; DeBay, D.; Ewart, H.S.; Gallant, P.; Gormley, S.; Ilenchuk, T.T.; Iqbal, U.; Lutes, T.; Martina, M.; Mealing, G.; Merkley, N.; Sperker, S.; Moreno, M.J.; Rice, C.; Syvitski, R.T.; Stewart, J.M. In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One, 2013, 8(3), e58866.
[http://dx.doi.org/10.1371/journal.pone.0058866] [PMID: 23554944]
[36]
Anand, P.; Filipenko, P.; Huaman, J.; Lyudmer, M.; Hossain, M.; Santamaria, C.; Huang, K.; Ogunwobi, O.; Holford, M. Antitumor effects of Tv1 venom peptide in liver cancer bioRxiv, 2019, 518340.
[37]
DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol., 1993, 264(2 Pt 1), C361-C369.
[http://dx.doi.org/10.1152/ajpcell.1993.264.2.C361] [PMID: 8383429]
[38]
DeBin, J.A.; Strichartz, G.R. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon, 1991, 29(11), 1403-1408.
[http://dx.doi.org/10.1016/0041-0101(91)90128-E] [PMID: 1726031]
[39]
Raffo, A.J.; Perlman, H.; Chen, M.W.; Day, M.L.; Streitman, J.S.; Buttyan, R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis In vivo and confers resistance to androgen depletion In vivo. Cancer Res., 1995, 55(19), 4438-4445.
[PMID: 7671257]
[40]
Liao, Q.; Ozawa, F.; Friess, H.; Zimmermann, A.; Takayama, S.; Reed, J.C.; Kleeff, J.; Büchler, M.W. The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett., 2001, 503(2-3), 151-157.
[http://dx.doi.org/10.1016/S0014-5793(01)02728-4] [PMID: 11513873]
[41]
Castle, V.P.; Heidelberger, K.P.; Bromberg, J.; Ou, X.; Dole, M.; Nuñez, G. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am. J. Pathol., 1993, 143(6), 1543-1550.
[PMID: 8256847]
[42]
Yang, J.; Wu, Y.; Wang, X.; Xu, L.; Zhao, X.; Yang, Y. Chemoresistance is associated with overexpression of HAX-1, inhibition of which resensitizes drug-resistant breast cancer cells to chemotherapy. Tumour Biol., 2017, 39(3), 1010428317692228.
[http://dx.doi.org/10.1177/1010428317692228] [PMID: 28347249]
[43]
Liu, Q.; Osterlund, E.J.; Chi, X.; Pogmore, J.; Leber, B.; Andrews, D.W. Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. eLife, 2019, 8e, 37689.
[http://dx.doi.org/10.7554/eLife.37689] [PMID: 30860026]
[44]
Kumar, M.; Gupta, D.; Singh, G.; Sharma, S.; Bhat, M.; Prashant, C.K.; Dinda, A.K.; Kharbanda, S.; Kufe, D.; Singh, H. Novel polymeric nanoparticles for intracellular delivery of peptide Cargos: Antitumor efficacy of the BCL-2 conversion peptide NuBCP-9. Cancer Res., 2014, 74(12), 3271-3281.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2015] [PMID: 24741005]
[45]
Liu, H.; Yang, H.; Wang, X.; Tu, Y. The Contribution of hexokinase 2 in glioma. Cancer Transl. Med., 2018, 4(2), 54.
[http://dx.doi.org/10.4103/ctm.ctm_11_18]
[46]
Jansson, A.; Sun, X-F. Bax expression decreases significantly from primary tumor to metastasis in colorectal cancer. J. Clin. Oncol., 2002, 20(3), 811-816.
[http://dx.doi.org/10.1200/JCO.20.3.811] [PMID: 11821465]
[47]
Gabernet, G.; Müller, A.T.; Hiss, J.A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm, 2016, 7(12), 2232-2245.
[http://dx.doi.org/10.1039/C6MD00376A]
[48]
Sharma, B.; Kanwar, S.S. Phosphatidylserine: A cancer cell targeting biomarker. Semin. Cancer Biol., 2018, 52(Pt 1), 17-25.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.012] [PMID: 28870843]
[49]
Wang, C.; Chen, Y-W.; Zhang, L.; Gong, X-G.; Zhou, Y.; Shang, D-J. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. J. Drug Target., 2016, 24(6), 548-556.
[http://dx.doi.org/10.3109/1061186X.2015.1113539] [PMID: 26596643]
[50]
Alghalayini, A.; Garcia, A.; Berry, T.; Cranfield, C.G.; Alghalayini, A.; Garcia, A.; Berry, T.; Cranfield, C.G. The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers. Antibiotics (Basel), 2019, 8(1), 12.
[http://dx.doi.org/10.3390/antibiotics8010012] [PMID: 30704119]
[51]
Zeth, K.; Sancho-Vaello, E. The human antimicrobial peptides dermcidin and LL-37 show novel distinct pathways in membrane interactions. Front Chem., 2017, 5, 86.
[http://dx.doi.org/10.3389/fchem.2017.00086] [PMID: 29164103]
[52]
Ahmed, T.A.E.; Hammami, R. Recent insights into structure-function relationships of antimicrobial peptides. J. Food Biochem., 2019, 43(1), e12546.
[http://dx.doi.org/10.1111/jfbc.12546] [PMID: 31353490]
[53]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility In vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[54]
Le, C-F.; Fang, C-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e02416.
[http://dx.doi.org/10.1128/AAC.02340-16]
[55]
Henriques, S.T.; Huang, Y-H.; Castanho, M.A.R.B.; Bagatolli, L.A.; Sonza, S.; Tachedjian, G.; Daly, N.L.; Craik, D.J. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J. Biol. Chem., 2012, 287(40), 33629-33643.
[http://dx.doi.org/10.1074/jbc.M112.372011] [PMID: 22854971]
[56]
Sane, S.; Rezvani, K. Essential roles of E3 ubiquitin ligases in p53 regulation. Int. J. Mol. Sci., 2017, 18(2), 442.
[http://dx.doi.org/10.3390/ijms18020442] [PMID: 28218667]
[57]
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104.
[http://dx.doi.org/10.1101/cshperspect.a026104] [PMID: 26931810]
[58]
Kao, S-H.; Wu, H-T.; Wu, K-J. Ubiquitination by HUWE1 in tumorigenesis and beyond. J. Biomed. Sci., 2018, 25(1), 67.
[http://dx.doi.org/10.1186/s12929-018-0470-0] [PMID: 30176860]
[59]
Fialho, A.M.; Bernardes, N.; Chakrabarty, A.M. Recent patents on live bacteria and their products as potential anticancer agents. Recent Patents Anticancer Drug Discov., 2012, 7(1), 31-55.
[http://dx.doi.org/10.2174/157489212798357949] [PMID: 21906014]
[60]
Yamada, T.; Christov, K.; Shilkaitis, A.; Bratescu, L.; Green, A.; Santini, S.; Bizzarri, A.R.; Cannistraro, S.; Gupta, T.K.D.; Beattie, C.W. p28, a first in class peptide inhibitor of cop1 binding to p53. Br. J. Cancer, 2013, 108(12), 2495-2504.
[http://dx.doi.org/10.1038/bjc.2013.266] [PMID: 23736031]
[61]
Warso, M.A.; Richards, J.M.; Mehta, D.; Christov, K.; Schaeffer, C.; Rae Bressler, L.; Yamada, T.; Majumdar, D.; Kennedy, S.A.; Beattie, C.W.; Das Gupta, T.K.A. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer, 2013, 108(5), 1061-1070.
[http://dx.doi.org/10.1038/bjc.2013.74] [PMID: 23449360]
[62]
Lulla, R.R.; Goldman, S.; Yamada, T.; Beattie, C.W.; Bressler, L.; Pacini, M.; Pollack, I.F.; Fisher, P.G.; Packer, R.J.; Dunkel, I.J.; Dhall, G.; Wu, S.; Onar, A.; Boyett, J.M.; Fouladi, M.; Phase, I. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro-oncol., 2016, 18(9), 1319-1325.
[http://dx.doi.org/10.1093/neuonc/now047] [PMID: 27022131]
[63]
Xia, J.; Wang, H.; Li, S.; Wu, Q.; Sun, L.; Huang, H.; Zeng, M. Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol. Cancer, 2017, 16(1), 54.
[http://dx.doi.org/10.1186/s12943-017-0622-y] [PMID: 28264681]
[64]
Rao, V.R.; Perez-Neut, M.; Kaja, S.; Gentile, S. Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel), 2015, 7(2), 849-875.
[http://dx.doi.org/10.3390/cancers7020813] [PMID: 26010603]
[65]
Lastraioli, E.; Iorio, J.; Arcangeli, A. Ion channel expression as promising cancer biomarker. Biochim. Biophys. Acta, 2015, 1848(10 Pt B), 2685-2702.
[http://dx.doi.org/10.1016/j.bbamem.2014.12.016] [PMID: 25542783]
[66]
Jang, S.H.; Byun, J.K.; Jeon, W-I.; Choi, S.Y.; Park, J.; Lee, B.H.; Yang, J.E.; Park, J.B.; O’Grady, S.M.; Kim, D-Y.; Ryu, P.D.; Joo, S-W.; Lee, S.Y. Nuclear localization and functional characteristics of voltage-gated potassium channel Kv1.3. J. Biol. Chem., 2015, 290(20), 12547-12557.
[http://dx.doi.org/10.1074/jbc.M114.561324] [PMID: 25829491]
[67]
Wang, B.; Xie, J.; He, H-Y.; Huang, E-W.; Cao, Q-H.; Luo, L.; Liao, Y-S.; Guo, Y. Suppression of CLC-3 chloride channel reduces the aggressiveness of glioma through inhibiting nuclear factor-κB pathway. Oncotarget, 2017, 8(38), 63788-63798.
[http://dx.doi.org/10.18632/oncotarget.19093] [PMID: 28969029]
[68]
Prevarskaya, N.; Skryma, R.; Shuba, Y. Calcium in tumour metastasis: New roles for known actors. Nat. Rev. Cancer, 2011, 11(8), 609-618.
[http://dx.doi.org/10.1038/nrc3105] [PMID: 21779011]
[69]
Cherubini, A.; Hofmann, G.; Pillozzi, S.; Guasti, L.; Crociani, O.; Cilia, E.; Di Stefano, P.; Degani, S.; Balzi, M.; Olivotto, M.; Wanke, E.; Becchetti, A.; Defilippi, P.; Wymore, R.; Arcangeli, A. Human ether-a-go-go-related gene 1 channels are physically linked to β1 integrins and modulate adhesion-dependent signaling. Mol. Biol. Cell, 2005, 16(6), 2972-2983.
[http://dx.doi.org/10.1091/mbc.e04-10-0940] [PMID: 15800067]
[70]
Crociani, O.; Lastraioli, E.; Boni, L.; Pillozzi, S.; Romoli, M.R.; D’Amico, M.; Stefanini, M.; Crescioli, S.; Masi, A.; Taddei, A.; Bencini, L.; Bernini, M.; Farsi, M.; Beghelli, S.; Scarpa, A.; Messerini, L.; Tomezzoli, A.; Vindigni, C.; Morgagni, P.; Saragoni, L.; Giommoni, E.; Gasperoni, S.; Di Costanzo, F.; Roviello, F.; De Manzoni, G.; Bechi, P.; Arcangeli, A. hERG1 channels regulate VEGF-A secretion in human gastric cancer: Clinicopathological correlations and therapeutical implications. Clin. Cancer Res., 2014, 20(6), 1502-1512.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2633] [PMID: 24449824]
[71]
Breuer, E-K.; Fukushiro-Lopes, D.; Dalheim, A.; Burnette, M.; Zartman, J.; Kaja, S.; Wells, C.; Campo, L.; Curtis, K.J.; Romero-Moreno, R.; Littlepage, L.E.; Niebur, G.L.; Hoskins, K.; Nishimura, M.I.; Gentile, S. Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death Dis., 2019, 10(3), 180.
[http://dx.doi.org/10.1038/s41419-019-1429-0] [PMID: 30792401]
[72]
Manoli, S.; Coppola, S.; Duranti, C.; Lulli, M.; Magni, L.; Kuppalu, N.; Nielsen, N.; Schmidt, T.; Schwab, A.; Becchetti, A.; Arcangeli, A. The activity of Kv 11.1 potassium channel modulates F-Actin organization during cell migration of pancreatic ductal adenocarcinoma cells. Cancers (Basel), 2019, 11(2), 135.
[http://dx.doi.org/10.3390/cancers11020135] [PMID: 30678127]
[73]
Pillozzi, S.; Brizzi, M.F.; Bernabei, P.A.; Bartolozzi, B.; Caporale, R.; Basile, V.; Boddi, V.; Pegoraro, L.; Becchetti, A.; Arcangeli, A. VEGFR-1 (FLT-1), beta1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: Role in cell migration and clinical outcome. Blood, 2007, 110(4), 1238-1250.
[http://dx.doi.org/10.1182/blood-2006-02-003772] [PMID: 17420287]
[74]
Pillozzi, S.; Masselli, M.; De Lorenzo, E.; Accordi, B.; Cilia, E.; Crociani, O.; Amedei, A.; Veltroni, M.; D’Amico, M.; Basso, G.; Becchetti, A.; Campana, D.; Arcangeli, A. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood, 2011, 117(3), 902-914.
[http://dx.doi.org/10.1182/blood-2010-01-262691] [PMID: 21048156]
[75]
Smith, G.A.M.; Tsui, H-W.; Newell, E.W.; Jiang, X.; Zhu, X-P.; Tsui, F.W.L.; Schlichter, L.C. Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J. Biol. Chem., 2002, 277(21), 18528-18534.
[http://dx.doi.org/10.1074/jbc.M200592200] [PMID: 11893742]
[76]
Cavarra, M.S.; del Mónaco, S.M.; Assef, Y.A.; Ibarra, C.; Kotsias, B.A. HERG1 currents in native K562 leukemic cells. J. Membr. Biol., 2007, 219(1-3), 49-61.
[http://dx.doi.org/10.1007/s00232-007-9060-x] [PMID: 17763876]
[77]
Pillozzi, S.; Brizzi, M.F.; Balzi, M.; Crociani, O.; Cherubini, A.; Guasti, L.; Bartolozzi, B.; Becchetti, A.; Wanke, E.; Bernabei, P.A.; Olivotto, M.; Pegoraro, L.; Arcangeli, A. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia, 2002, 16(9), 1791-1798.
[http://dx.doi.org/10.1038/sj.leu.2402572] [PMID: 12200695]
[78]
Lansu, K.; Gentile, S. Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death Dis., 2013, 4(6), e652-e652.
[http://dx.doi.org/10.1038/cddis.2013.174] [PMID: 23744352]
[79]
Monteith, G.R.; Davis, F.M.; Roberts-Thomson, S.J. Calcium channels and pumps in cancer: Changes and consequences. J. Biol. Chem., 2012, 287(38), 31666-31673.
[http://dx.doi.org/10.1074/jbc.R112.343061] [PMID: 22822055]
[80]
Cuddapah, V.A.; Robel, S.; Watkins, S.; Sontheimer, H. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci., 2014, 15(7), 455-465.
[http://dx.doi.org/10.1038/nrn3765] [PMID: 24946761]
[81]
Cuddapah, V.A.; Sontheimer, H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am. J. Physiol. Cell Physiol., 2011, 301(3), C541-C549.
[http://dx.doi.org/10.1152/ajpcell.00102.2011] [PMID: 21543740]
[82]
Mamelak, A.N.; Rosenfeld, S.; Bucholz, R.; Raubitschek, A.; Nabors, L.B.; Fiveash, J.B.; Shen, S.; Khazaeli, M.B.; Colcher, D.; Liu, A.; Osman, M.; Guthrie, B.; Schade-Bijur, S.; Hablitz, D.M.; Alvarez, V.L.; Gonda, M.A.; Phase, I. Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol., 2006, 24(22), 3644-3650.
[http://dx.doi.org/10.1200/JCO.2005.05.4569] [PMID: 16877732]
[83]
Lefranc, F.; Le Rhun, E.; Kiss, R.; Weller, M. Glioblastoma quo vadis: Will migration and invasiveness reemerge as therapeutic targets? Cancer Treat. Rev., 2018, 68, 145-154.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.017] [PMID: 30032756]
[84]
Ojeda, P.G.; Wang, C.K.; Craik, D.J. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers, 2016, 106(1), 25-36.
[http://dx.doi.org/10.1002/bip.22748] [PMID: 26418522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy