Title:Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery
Volume: 26
Issue: 26
Author(s): Arjunan Karuppaiah, Ravikumar Rajan, Sivaram Hariharan, Dinesh K. Balasubramaniam, Marslin Gregory*Veintramuthu Sankar*
Affiliation:
- Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, Tamil Nadu,India
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu,India
Keywords:
Breast cancer, silver nanoparticles, metallic nanoparticles, chemical reduction, folic acid reduction, gemcitabine, folate receptor,
MDA-MB-453.
Abstract:
Background: Silver nanoparticles (AgNPs) have attracted considerable interest in the medical industry
due to their physicochemical properties, small size, and surface plasmon behavior. Their smaller particle size and
instability in blood circulation leads to toxicity due to its aggregation as Ag+ ions and accumulation at the deepseated
organ. In the present study, we aimed at reducing the toxicity of AgNPs by conjugation with an anticancer
drug GEM and to improve their internalization through folate receptors-mediated endocytosis by capping the
nanoparticles with folic acid (FA).
Methods: One-pot facile synthesis of FA capped silver nanoparticles (FA-AgNPs) has been achieved by using FA
as a reducing agent. FA-AgNPs were mixed with Gemcitabine (GEM) to obtain tethered FA-GEM-AgNPs.
Nanoparticles were characterized by Dynamic Light Scattering (DLS), UV-Visible spectroscopy, Transmission
Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX), Selected Area Electron Diffraction
(SAED), and Atomic Absorption Spectroscopy (AAS). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was carried out to determine the cytotoxic effect of the prepared nanoformulations. The
apoptotic cell death induced by FA-GEM-AgNPs in breast cancer cells were monitored with Acridine orange
(AO)/Ethidium Bromide (EtBr) staining.
Conclusion: Compared to GEM and AgNPs, FA-GEM-AgNPs showed enhanced cytotoxic effect and internalization
in MDA-MB-453 breast cancer cell line. FA-GEM-AgNPs could be an ideal candidate for targeting cancer
cells via folate receptor-mediated endocytosis.