Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I

Author(s): Yeliz Demir *, Cüneyt Türkeş and Şükrü Beydemir

Volume 20, Issue 7, 2020

Page: [887 - 896] Pages: 10

DOI: 10.2174/1871520620666200218110645

Price: $65

Abstract

Background: Currently, most of the drugs used in clinical applications show their pharmacological influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug design for many diseases.

Objective: The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and development) by analyzing enzyme-drug interactions.

Methods: For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched on the PON1.

Results: The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM, 30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition, while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of -5.46 and -8.43 kcal/mol, respectively.

Conclusion: The interaction studies indicated that these agents with the PON1 possess binding affinity.

Keywords: Paraoxonase, chromatography, inhibition, antineoplastic agent, molecular docking, enzyme-drug interactions.

Graphical Abstract
[1]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[2]
Tanaka, T.; Utsunomiya, T.; Utsunomiya, H.; Umesaki, N. Irinotecan HCl, an anticancer topoisomerase I inhibitor, frequently induces ovarian failure in premenopausal and perimenopausal women. Oncol. Rep., 2008, 19(5), 1123-1133.
[http://dx.doi.org/10.3892/or.19.5.1123] [PMID: 18425367]
[3]
Curtin, N.J.; Hughes, A.N. Pemetrexed disodium, a novel antifolate with multiple targets. Lancet Oncol., 2001, 2(5), 298-306.
[http://dx.doi.org/10.1016/S1470-2045(00)00325-9] [PMID: 11905785]
[4]
Hanauske, A-R.; Chen, V.; Paoletti, P.; Niyikiza, C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist, 2001, 6(4), 363-373.
[http://dx.doi.org/10.1634/theoncologist.6-4-363] [PMID: 11524555]
[5]
Tsuda, H.; Takatsuki, K.; Ohno, R.; Masaoka, T.; Okada, K.; Shirakawa, S.; Ohashi, Y.; Ota, K. Treatment of adult T-cell leukaemia-lymphoma with irinotecan hydrochloride (CPT-11). CPT-11 Study Group on Hematological Malignancy. Br. J. Cancer, 1994, 70(4), 771-774.
[http://dx.doi.org/10.1038/bjc.1994.394] [PMID: 7917938]
[6]
Ohdo, S.; Makinosumi, T.; Ishizaki, T.; Yukawa, E.; Higuchi, S.; Nakano, S.; Ogawa, N. Cell cycle-dependent chronotoxicity of irinotecan hydrochloride in mice. J. Pharmacol. Exp. Ther., 1997, 283(3), 1383-1388.
[PMID: 9400014]
[7]
Pommier, Y. Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints. Curr. Med. Chem. Anticancer Agents, 2004, 4(5), 429-434.
[http://dx.doi.org/10.2174/1568011043352777] [PMID: 15379698]
[8]
Legha, S.S. Current therapy for malignant melanoma. Semin. Oncol., 1989, 16, 34-44.
[9]
Yap, B-S.; Baker, L.H.; Sinkovics, J.G.; Rivkin, S.E.; Bottomley, R.; Thigpen, T.; Burgess, M.A.; Benjamin, R.S.; Bodey, G.P. Cyclophosphamide, vincristine, adriamycin, and DTIC (CYVADIC) combination chemotherapy for the treatment of advanced sarcomas. Cancer Treat. Rep., 1980, 64(1), 93-98.
[PMID: 7379060]
[10]
Comis, R.L. DTIC (NSC-45388) in malignant melanoma: a perspective. Cancer Treat. Rep., 1976, 60(2), 165-176.
[PMID: 769969]
[11]
Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med., 2003, 349(21), 2042-2054.
[http://dx.doi.org/10.1056/NEJMra023075] [PMID: 14627790]
[12]
Derissen, E.J.B.; Beijnen, J.H.; Schellens, J.H.M. Concise drug review: azacitidine and decitabine. Oncologist, 2013, 18(5), 619-624.
[http://dx.doi.org/10.1634/theoncologist.2012-0465] [PMID: 23671007]
[13]
Caglayan, C.; Demir, Y.; Kucukler, S.; Taslimi, P.; Kandemir, F.M.; Gulçin, İ. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J. Food Biochem., 2019, 43(2), e12720
[http://dx.doi.org/10.1111/jfbc.12720] [PMID: 31353640]
[14]
Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[15]
Ferré, N.; Camps, J.; Cabré, M.; Paul, A.; Joven, J. Hepatic paraoxonase activity alterations and free radical production in rats with experimental cirrhosis. Metabolism, 2001, 50(9), 997-1000.
[http://dx.doi.org/10.1053/meta.2001.25589] [PMID: 11555827]
[16]
Teiber, J.F.; Draganov, D.I.; La Du, B.N. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem. Pharmacol., 2003, 66(6), 887-896.
[http://dx.doi.org/10.1016/S0006-2952(03)00401-5] [PMID: 12963475]
[17]
Çağlayan, C.; Taslimi, P.; Demir, Y.; Küçükler, S.; Kandemir, F.M.; Gulçin, İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol., 2019, 33(10), e22381
[http://dx.doi.org/10.1002/jbt.22381] [PMID: 31454121]
[18]
Türkeş, C.; Demir, Y.; Beydemir, Ş. Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity. Appl. Biochem. Biotechnol., 2019, 189(1), 318-329.
[http://dx.doi.org/10.1007/s12010-019-03009-x] [PMID: 30980289]
[19]
Caglayan, C.; Taslimi, P.; Türk, C.; Kandemir, F.M.; Demir, Y.; Gulcin, İ. Purification and characterization of the carbonic anhydrase enzyme from horse mackerel (Trachurus trachurus) muscle and the impact of some metal ions and pesticides on enzyme activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 226108605
[http://dx.doi.org/10.1016/j.cbpc.2019.108605] [PMID: 31422160]
[20]
Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.004] [PMID: 30077669]
[21]
Erdemir, F.; Celepci, D.B.; Aktaş, A.; Gök, Y.; Kaya, R.; Taslimi, P.; Demir, Y.; Gulçin, İ. Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg. Chem., 2019, 91103134
[http://dx.doi.org/10.1016/j.bioorg.2019.103134] [PMID: 31374523]
[22]
Demir, Y.; Taslimi, P.; Ozaslan, M.S.; Oztaskin, N.; Çetinkaya, Y.; Gulçin, İ.; Beydemir, Ş.; Goksu, S. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch. Pharm. (Weinheim), 2018, 351(12)e1800263
[http://dx.doi.org/10.1002/ardp.201800263] [PMID: 30478943]
[23]
Renault, F.; Chabrière, E.; Andrieu, J-P.; Dublet, B.; Masson, P.; Rochu, D. Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 836(1-2), 15-21.
[http://dx.doi.org/10.1016/j.jchromb.2006.03.029] [PMID: 16595195]
[24]
Demir, Y.; Dikbaş, N.; Beydemir, Ş. Purification and biochemical characterization of phytase enzyme from Lactobacillus coryniformis (MH121153). Mol. Biotechnol., 2018, 60(11), 783-790.
[http://dx.doi.org/10.1007/s12033-018-0116-1] [PMID: 30171516]
[25]
Akbaba, Y.; Türkeş, C.; Polat, L.; Söyüt, H.; Şahin, E.; Menzek, A.; Göksu, S.; Beydemir, S. Synthesis and paroxonase activities of novel bromophenols. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1073-1079.
[http://dx.doi.org/10.3109/14756366.2012.715287] [PMID: 22994801]
[26]
Demir, Y.; Şengül, B.; Ergun, B.; Beydemir, Ş. Alcohol dehydrogenase from sheep liver: Purifcation, characterization and impacts of some antibiotics. J. Instit. Sci. Technol., 2017, 7(3), 151-160.
[http://dx.doi.org/10.21597/jist.2017.173]
[27]
Beydemir, Ş.; Demir, Y. Antiepileptic drugs: Impacts on human serum paraoxonase-1. J. Biochem. Mol. Toxicol., 2017, 31(6)e21889
[http://dx.doi.org/10.1002/jbt.21889] [PMID: 28032682]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[30]
Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70103195
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[31]
Türkan, F.; Huyut, Z.; Demir, Y.; Ertaş, F.; Beydemir, Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Arch. Physiol. Biochem., 2019, 125(3), 235-243.
[http://dx.doi.org/10.1080/13813455.2018.1452037] [PMID: 29564935]
[32]
Özaslan, M.S.; Demir, Y.; Aksoy, M.; Küfrevioğlu, Ö.I.; Beydemir, Ş. Inhibition effects of pesticides on glutathione-S-transferase enzyme activity of Van Lake fish liver. J. Biochem. Mol. Toxicol., 2018, 32(9), e22196
[http://dx.doi.org/10.1002/jbt.22196] [PMID: 30015991]
[33]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. Inhibition effects of gemcitabine hydrochloride, acyclovir, and 5-fluorouracil on human serum paraoxonase-1 (hPON1): In vitro. Open J. Biochem., 2013, 1, 10-15.
[34]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[35]
Ben-David, M.; Elias, M.; Filippi, J-J.; Duñach, E.; Silman, I.; Sussman, J.L.; Tawfik, D.S. Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. J. Mol. Biol., 2012, 418(3-4), 181-196.
[http://dx.doi.org/10.1016/j.jmb.2012.02.042] [PMID: 22387469]
[36]
Türkeş, C.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. In vitro and In silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor. ChemistrySelect, 2019, 4(33), 9731-9736.
[http://dx.doi.org/10.1002/slct.201902424]
[37]
Türkeş, C. A potential risk factor for paraoxonase 1: in silico and in-vitro analysis of the biological activity of proton-pump inhibitors. J. Pharm. Pharmacol., 2019, 71(10), 1553-1564.
[http://dx.doi.org/10.1111/jphp.13141] [PMID: 31353473]
[38]
Işık, M.; Demir, Y.; Durgun, M.; Türkeş, C.; Necip, A.; Beydemir, Ş. Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chem. Pap., 2019, 74, 1395-1405.
[http://dx.doi.org/10.1007/s11696-019-00988-3]
[39]
Türkeş, C.; Arslan, M.; Demir, Y.; Çoçaj, L.; Rifati Nixha, A.; Beydemir, Ş. Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 89, 103004
[http://dx.doi.org/10.1016/j.bioorg.2019.103004] [PMID: 31129502]
[40]
Türkeş, C.; Beydemir, Ş. Inhibition of human serum paraoxonase-I with antimycotic drugs: in vitro and in silico studies. Appl. Biochem. Biotechnol., 2019, 190(1), 252-269.
[http://dx.doi.org/10.1007/s12010-019-03073-3] [PMID: 31342307]
[41]
Işık, M.; Beydemir, Ş.; Demir, Y.; Durgun, M.; Türkeş, C.; Nasır, A.; Necip, A.; Akkuş, M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int. J. Biol. Macromol., 2019, 146, 1111-1123.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.237] [PMID: 31739032]
[42]
Türkeş, C. Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: Chemotherapeutic drugs. Protein Pept. Lett., 2019, 26(6), 392-402.
[http://dx.doi.org/10.2174/0929866526666190226162225] [PMID: 30819074]
[43]
Beydemir, Ş.; Türkeş, C.; Yalçın, A. Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem. Toxicol., 2019, 9, 1-10.
[http://dx.doi.org/10.1080/01480545.2019.1620266] [PMID: 31179770]
[44]
Türkeş, C. Inhibition effects of phenolic compounds on human serum paraoxonase-1 enzyme. J. Instit. Sci. Technol., 2019, 9(2), 1013-1022.
[http://dx.doi.org/10.21597/jist.491054]
[45]
Gündoğdu, S.; Türkeş, C.; Arslan, M.; Demir, Y.; Beydemir, Ş. New isoindole-1,3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 2019, 4(45), 13347-13355.
[http://dx.doi.org/10.1002/slct.201903458]
[46]
Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[47]
Özaslan, M.S.; Balcı, N.; Demir, Y.; Gürbüz, M.; Küfrevioğlu, Ö.İ. Inhibition effects of some antidepressant drugs on pentose phosphate pathway enzymes. Environ. Toxicol. Pharmacol., 2019, 72, 103244
[http://dx.doi.org/10.1016/j.etap.2019.103244] [PMID: 31557707]
[48]
Demir, Y.; Işık, M.; Gülçin, İ.; Beydemir, Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J. Biochem. Mol. Toxicol., 2017, 31(9), e21936
[http://dx.doi.org/10.1002/jbt.21935] [PMID: 28557170]
[49]
Demir, Y.; Duran, H.E.; Durmaz, L.; Taslimi, P.; Beydemir, Ş.; Gulçin, İ. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders. Appl. Biochem. Biotechnol., 2020, 190(2), 437-447.
[http://dx.doi.org/10.1007/s12010-019-03099-7] [PMID: 31378842]
[50]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[51]
Noda, N.; Wakasugi, H. Cancer and oxidative stress. Japan Med. Assoc. J., 2001, 44(12), 535-539.
[52]
Taylor, E.C.; Kuhnt, D.; Shih, C.; Rinzel, S.M.; Grindey, G.B.; Barredo, J.; Jannatipour, M.; Moran, R.G. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem., 1992, 35(23), 4450-4454.
[http://dx.doi.org/10.1021/jm00101a023] [PMID: 1447744]
[53]
Nottebrock, H.; Then, R. Thymidine concentrations in serum and urine of different animal species and man. Biochem. Pharmacol., 1977, 26(22), 2175-2179.
[http://dx.doi.org/10.1016/0006-2952(77)90271-4] [PMID: 412502]
[54]
Jackman, A.L.; Taylor, G.A.; Calvert, A.H.; Harrap, K.R. Modulation of anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochem. Pharmacol., 1984, 33(20), 3269-3275.
[http://dx.doi.org/10.1016/0006-2952(84)90089-3] [PMID: 6487375]
[55]
Takahata, T.; Ookawa, K.; Suto, K.; Tanaka, M.; Yano, H.; Nakashima, O.; Kojiro, M.; Tamura, Y.; Tateishi, T.; Sakata, Y.; Fukuda, S. Chemosensitivity determinants of irinotecan hydrochloride in hepatocellular carcinoma cell lines. Basic Clin. Pharmacol. Toxicol., 2008, 102(4), 399-407.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00199.x] [PMID: 18248513]
[56]
Qiu, X.; Hother, C.; Ralfkiær, U.M.; Søgaard, A.; Lu, Q.; Workman, C.T.; Liang, G.; Jones, P.A.; Grønbæk, K. Equitoxic doses of 5-azacytidine and 5-aza-2'deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One, 2010, 5(9), e12994
[http://dx.doi.org/10.1371/journal.pone.0012994] [PMID: 20927380]
[57]
Kono, K.; Iinuma, H.; Akutsu, Y.; Tanaka, H.; Hayashi, N.; Uchikado, Y.; Noguchi, T.; Fujii, H.; Okinaka, K.; Fukushima, R.; Matsubara, H.; Ohira, M.; Baba, H.; Natsugoe, S.; Kitano, S.; Takeda, K.; Yoshida, K.; Tsunoda, T.; Nakamura, Y. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J. Transl. Med., 2012, 10, 141.
[http://dx.doi.org/10.1186/1479-5876-10-141] [PMID: 22776426]
[58]
Kawada, J.; Wada, H.; Isobe, M.; Gnjatic, S.; Nishikawa, H.; Jungbluth, A.A.; Okazaki, N.; Uenaka, A.; Nakamura, Y.; Fujiwara, S.; Mizuno, N.; Saika, T.; Ritter, E.; Yamasaki, M.; Miyata, H.; Ritter, G.; Murphy, R.; Venhaus, R.; Pan, L.; Old, L.J.; Doki, Y.; Nakayama, E. Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int. J. Cancer, 2012, 130(3), 584-592.
[http://dx.doi.org/10.1002/ijc.26074] [PMID: 21413013]
[59]
Kimura, S.; Kuramoto, K.; Homan, J.; Naruoka, H.; Ego, T.; Nogawa, M.; Sugahara, S.; Naito, H. Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM-1. Anticancer Res., 2012, 32(3), 795-798.
[PMID: 22399596]
[60]
Hardy, K.M.; Strizzi, L.; Margaryan, N.V.; Gupta, K.; Murphy, G.F.; Scolyer, R.A.; Hendrix, M.J. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol. Cancer Res., 2015, 13(4), 670-680.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0077] [PMID: 25767211]
[61]
Ceylan, H.; Demir, Y.; Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept. Lett., 2019, 26(5), 364-370.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[62]
Işık, M.; Demir, Y.; Kırıcı, M.; Demir, R.; Şimşek, F.; Beydemir, Ş. Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Arch. Physiol. Biochem., 2015, 121(3), 97-102.
[http://dx.doi.org/10.3109/13813455.2015.1026912] [PMID: 26120045]
[63]
Demir, Y.; Köksal, Z. The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol. Rep., 2019, 71(3), 545-549.
[http://dx.doi.org/10.1016/j.pharep.2019.02.012] [PMID: 31109643]
[64]
Alım, Z.; Kılıç, D.; Demir, Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Arch. Physiol. Biochem., 2019, 125(5), 387-395.
[http://dx.doi.org/10.1080/13813455.2018.1470646] [PMID: 29741961]
[65]
Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov., 2002, 1(9), 727-730.
[http://dx.doi.org/10.1038/nrd892] [PMID: 12209152]
[66]
Copeland, R.A. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9781118540398]
[67]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environ. Toxicol. Pharmacol., 2016, 42, 252-257.
[http://dx.doi.org/10.1016/j.etap.2015.11.024] [PMID: 26915059]
[68]
Demir, Y.; Beydemir, Ş. Purification, refolding, and characterization of recombinant human paraoxonase-1. Turk. J. Chem., 2015, 39(4), 764-776.
[http://dx.doi.org/10.3906/kim-1501-51]
[69]
Alim, Z.; Beydemir, Ş. Some anticancer agents act on human serum Paraoxonase‐1 to reduce its activity. Chem. Biol. Drug Des., 2016, 88(2), 188-196.
[http://dx.doi.org/10.1111/cbdd.12746] [PMID: 26873069]
[70]
Türkeş, C.; Söyüt, H.; Beydemir, S. Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacol. Rep., 2014, 66(1), 74-80.
[http://dx.doi.org/10.1016/j.pharep.2013.08.007] [PMID: 24905310]
[71]
Türkeş, C.; Söyüt, H.; Beydemir, Ş. Human serum paraoxonase-1 (hPON1): in vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 622-628.
[http://dx.doi.org/10.3109/14756366.2014.959511] [PMID: 25519764]
[72]
Ekinci, D.; Sentürk, M.; Beydemir, S.; Küfrevioğlu, Ö.I.; Supuran, C.T. An alternative purification method for human serum paraoxonase 1 and its interactions with sulfonamides. Chem. Biol. Drug Des., 2010, 76(6), 552-558.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01036.x] [PMID: 21040495]
[73]
Demir, Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J. Pharm. Pharmacol., 2019, 71(10), 1576-1583.
[http://dx.doi.org/10.1111/jphp.13144] [PMID: 31347707]
[74]
Demir, Y.; Balcı, N.; Gürbüz, M. Differential effects of selective serotonin reuptake inhibitors on paraoxonase-1 enzyme activity: An in vitro study. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 226, 108608
[http://dx.doi.org/10.1016/j.cbpc.2019.108608] [PMID: 31422163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy