Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives

Author(s): Snober Shabeer Wani, Parvaiz A. Dar, Sajad M. Zargar and Tanveer A. Dar*

Volume 21, Issue 5, 2020

Page: [443 - 487] Pages: 45

DOI: 10.2174/1389203720666191119095624

Price: $65

Abstract

Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.

Keywords: Protein therapeutics, antibacterial activity, antifungal activity, anticancerous activity, ribosome-inactivating activity, anti-HIV activity.

Graphical Abstract
[1]
Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci., 2018, 19(1), E263
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[2]
L. M.The success of natural products in drug discovery. Pharmacol Pharm.S, 2013, 4(3A), 17-31.
[3]
Pan, L.; Chai, H.B.; Kinghorn, A.D. Discovery of new anticancer agents from higher plants. Front. Biosci. (Schol. Ed.), 2012, 4, 142-156.
[http://dx.doi.org/10.2741/s257] [PMID: 22202049]
[4]
Clemente, A.; Arques, Mdel.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroenterol., 2014, 20(30), 10305-10315.
[http://dx.doi.org/10.3748/wjg.v20.i30.10305] [PMID: 25132747]
[5]
Li, W.W.; Yu, J.Y.; Xu, H.L.; Bao, J.K. Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem. Biophys. Res. Commun., 2011, 414(2), 282-286.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.072] [PMID: 21951850]
[6]
Gondim, A.C.S.; Romero-Canelón, I.; Sousa, E.H.S.; Blindauer, C.A.; Butler, J.S.; Romero, M.J.; Sanchez-Cano, C.; Sousa, B.L.; Chaves, R.P.; Nagano, C.S.; Cavada, B.S.; Sadler, P.J. The potent anti-cancer activity of Dioclea lasiocarpa lectin. J. Inorg. Biochem., 2017, 175, 179-189.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.07.011] [PMID: 28756174]
[7]
Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov., 2008, 7(1), 21-39.
[http://dx.doi.org/10.1038/nrd2399] [PMID: 18097458]
[8]
Mahajan, A.; Rawat, A.S.; Bhatt, N.; Chauhan, M.K. Structural modification of proteins and peptides. Indian J. Pharm. Educ. Res., 2014, 48, 34-47.
[http://dx.doi.org/10.5530/ijper.48.3.6]
[9]
Reddy, N.; Yang, Y. Potential of plant proteins for medical applications. Trends Biotechnol., 2011, 29(10), 490-498.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.003] [PMID: 21665302]
[10]
O’Keefe, B.R. Biologically active proteins from natural product extracts. J. Nat. Prod., 2001, 64(10), 1373-1381.
[http://dx.doi.org/10.1021/np0103362] [PMID: 11678673]
[11]
Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry, 2018, 154, 94-105.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.002] [PMID: 30031244]
[12]
Samriti; Biswas, R.; Biswas, K. Plant antimicrobial peptides: a novel approach against drug resistant microorganisms. Int. J. Pharm. Sci. Res., 2018, 9(1), 1-5.
[13]
Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci., 2016, 17(5), E603
[http://dx.doi.org/10.3390/ijms17050603] [PMID: 27153059]
[14]
Yili, A.M.V.; Ma, Q.L.; Gao, Y.H.; Veshkurova, O.; Salikhov, S.; Aisa, H.A. Antimicrobial peptides from the plants. J. Pharm. Pharmacol., 2014, 2, 627-641.
[15]
Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel), 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[16]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[17]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[18]
Peters, B.M.; Shirtliff, M.E.; Jabra-Rizk, M.A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog., 2010, 6(10), e1001067
[http://dx.doi.org/10.1371/journal.ppat.1001067] [PMID: 21060861]
[19]
Barbosa Pelegrini, P.; Del Sarto, R.P.; Silva, O.N.; Franco, O.L.; Grossi-de-Sa, M.F. Antibacterial peptides from plants: what they are and how they probably work. Biochem. Res. Int., 2011, 2011, 250349
[http://dx.doi.org/10.1155/2011/250349] [PMID: 21403856]
[20]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[21]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol. (Praha), 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[22]
Shebek, K.; Schantz, A.B.; Sines, I.; Lauser, K.; Velegol, S.; Kumar, M. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion. Langmuir, 2015, 31(15), 4496-4502.
[http://dx.doi.org/10.1021/acs.langmuir.5b00015] [PMID: 25845029]
[23]
Cézard, C.; Silva-Pires, V.; Mullié, C.; Sonnet, P. Antibacterial peptides: a review. Microbiology Book Series-2011 Edition titled "Science against microbial pathogens: communicating current research and technological advances"A. Méndez-Vilas (Ed.). 2.. 926-937., 2011, pp.
[24]
Park, C.J.; Park, C.B.; Hong, S.S.; Lee, H.S.; Lee, S.Y.; Kim, S.C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris. Plant Mol. Biol., 2000, 44(2), 187-197.
[http://dx.doi.org/10.1023/A:1006431320677] [PMID: 11117262]
[25]
Tam, J.P.; Lu, Y.A.; Yang, J.L.; Chiu, K.W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8913-8918.
[http://dx.doi.org/10.1073/pnas.96.16.8913] [PMID: 10430870]
[26]
Fujimura, M.; Ideguchi, M.; Minami, Y.; Watanabe, K.; Tadera, K. Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.). Biosci. Biotechnol. Biochem., 2004, 68(3), 571-577.
[http://dx.doi.org/10.1271/bbb.68.571] [PMID: 15056889]
[27]
Al Akeel, R.; Mateen, A.; Syed, R.; Alyousef, A.A.; Shaik, M.R. Screening, purification and characterization of anionic antimicrobial proteins from foeniculum vulgare. Molecules, 2017, 22(4), E602
[http://dx.doi.org/10.3390/molecules22040602] [PMID: 28397764]
[28]
Berrocal-Lobo, M.; Segura, A.; Moreno, M.; López, G.; García-Olmedo, F.; Molina, A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol., 2002, 128(3), 951-961.
[http://dx.doi.org/10.1104/pp.010685] [PMID: 11891250]
[29]
Liu, Y.; Luo, J.; Xu, C.; Ren, F.; Peng, C.; Wu, G.; Zhao, J. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol., 2000, 122(4), 1015-1024.
[http://dx.doi.org/10.1104/pp.122.4.1015] [PMID: 10759497]
[30]
Thapliyal, M.; Bisht, A.; Singh, A. Isolation of antibacterial protein/peptide from ficus glomerata leaf. Int. J. Curr. Pharm. Res., 2016, 8(4), 24-27.
[31]
Ningappa, M.B.; Srinivas, L. Purification and characterization of approximately 35 kDa antioxidant protein from curry leaves (Murraya koenigii L.). Toxicol. In Vitro, 2008, 22(3), 699-709.
[http://dx.doi.org/10.1016/j.tiv.2007.11.009] [PMID: 18082361]
[32]
Daneshmand, F.; Zare-Zardini, H.; Ebrahimi, L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Nat. Prod. Res., 2013, 27(24), 2292-2296.
[http://dx.doi.org/10.1080/14786419.2013.827192] [PMID: 23962183]
[33]
Wong, J.H.; Ng, T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides, 2005, 26(7), 1120-1126.
[http://dx.doi.org/10.1016/j.peptides.2005.01.003] [PMID: 15949629]
[34]
Wong, J.H.; Ng, T.B. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides, 2005, 26(11), 2086-2092.
[http://dx.doi.org/10.1016/j.peptides.2005.03.004] [PMID: 16269344]
[35]
Yokoyama, S.; Kato, K.; Koba, A.; Minami, Y.; Watanabe, K.; Yagi, F. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides, 2008, 29(12), 2110-2117.
[http://dx.doi.org/10.1016/j.peptides.2008.08.007] [PMID: 18778743]
[36]
Tailor, R.H.; Acland, D.P.; Attenborough, S.; Cammue, B.P.; Evans, I.J.; Osborn, R.W.; Ray, J.A.; Rees, S.B.; Broekaert, W.F. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem., 1997, 272(39), 24480-24487.
[http://dx.doi.org/10.1074/jbc.272.39.24480] [PMID: 9305910]
[37]
Cammue, B.P.; De Bolle, M.F.; Terras, F.R.; Proost, P.; Van Damme, J.; Rees, S.B.; Vanderleyden, J.; Broekaert, W.F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem., 1992, 267(4), 2228-2233.
[PMID: 1733929]
[38]
Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; Dos Santos, R.C.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr; Noronha, E.F.; Miller, R.N.; Franco, O.L. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 2008, 29(8), 1271-1279.
[http://dx.doi.org/10.1016/j.peptides.2008.03.013] [PMID: 18448201]
[39]
Girish, K.S.; Machiah, K.D.; Ushanandini, S.; Harish Kumar, K.; Nagaraju, S.; Govindappa, M.; Vedavathi, M.; Kemparaju, K. Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J. Basic Microbiol., 2006, 46(5), 365-374.
[http://dx.doi.org/10.1002/jobm.200510108] [PMID: 17009292]
[40]
Ningappa, M.B.; Dhananjaya, B.L.; Dinesha, R.; Harsha, R.; Srinivas, L. Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chem., 2010, 118(3), 747-750.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.059]
[41]
Segura, A.; Moreno, M.; Molina, A.; García-Olmedo, F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett., 1998, 435(2-3), 159-162.
[http://dx.doi.org/10.1016/S0014-5793(98)01060-6] [PMID: 9762899]
[42]
Pränting, M.; Lööv, C.; Burman, R.; Göransson, U.; Andersson, D.I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother., 2010, 65(9), 1964-1971.
[http://dx.doi.org/10.1093/jac/dkq220] [PMID: 20558471]
[43]
Franco, O.L.; Murad, A.M.; Leite, J.R.; Mendes, P.A.; Prates, M.V.; Bloch, C., Jr Identification of a cowpea gamma-thionin with bactericidal activity. FEBS J., 2006, 273(15), 3489-3497.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05349.x] [PMID: 16824043]
[44]
Koo, J.C.; Lee, S.Y.; Chun, H.J.; Cheong, Y.H.; Choi, J.S.; Kawabata, S.; Miyagi, M.; Tsunasawa, S.; Ha, K.S.; Bae, D.W.; Han, C.D.; Lee, B.L.; Cho, M.J. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta, 1998, 1382(1), 80-90.
[http://dx.doi.org/10.1016/S0167-4838(97)00148-9] [PMID: 9507071]
[45]
Chen, G.H.; Hsu, M.P.; Tan, C.H.; Sung, H.Y.; Kuo, C.G.; Fan, M.J.; Chen, H.M.; Chen, S.; Chen, C.S. Cloning and characterization of a plant defensin VaD1 from azuki bean. J. Agric. Food Chem., 2005, 53(4), 982-988.
[http://dx.doi.org/10.1021/jf0402227] [PMID: 15713009]
[46]
Wong, J.H.; Ng, T.B. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int. J. Biochem. Cell Biol., 2005, 37(8), 1626-1632.
[http://dx.doi.org/10.1016/j.biocel.2005.02.022] [PMID: 15896669]
[47]
Fernandez de Caleya, R.; Gonzalez-Pascual, B.; García-Olmedo, F.; Carbonero, P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl. Microbiol., 1972, 23(5), 998-1000.
[PMID: 5031563]
[48]
Kragh, K.M.; Nielsen, J.E.; Nielsen, K.K.; Dreboldt, S.; Mikkelsen, J.D. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol. Plant Microbe Interact., 1995, 8(3), 424-434.
[http://dx.doi.org/10.1094/MPMI-8-0424] [PMID: 7655063]
[49]
Vivanco, J.M.; Savary, B.J.; Flores, H.E. Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol., 1999, 119(4), 1447-1456.
[http://dx.doi.org/10.1104/pp.119.4.1447] [PMID: 10198104]
[50]
Sharma, S.; Verma, H.N.; Sharma, N.K. Cationic bioactive peptide from the seeds of benincasa hispida. Int. J. Pept., 2014, 2014, 156060
[http://dx.doi.org/10.1155/2014/156060] [PMID: 24834076]
[51]
Fujimura, M.; Minami, Y.; Watanabe, K.; Tadera, K. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci. Biotechnol. Biochem., 2003, 67(8), 1636-1642.
[http://dx.doi.org/10.1271/bbb.67.1636] [PMID: 12951494]
[52]
Xia, L.; Ng, T.B. Isolation of alliumin, a novel protein with antimicrobial and antiproliferative activities from multiple-cloved garlic bulbs. Peptides, 2005, 26(2), 177-183.
[http://dx.doi.org/10.1016/j.peptides.2004.09.019] [PMID: 15629528]
[53]
Zhang, Y.; Lewis, K. Fabatins: new antimicrobial plant peptides. FEMS Microbiol. Lett., 1997, 149(1), 59-64.
[http://dx.doi.org/10.1111/j.1574-6968.1997.tb10308.x] [PMID: 9103978]
[54]
Duvick, J.P.; Rood, T.; Rao, A.G.; Marshak, D.R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J. Biol. Chem., 1992, 267(26), 18814-18820.
[PMID: 1527010]
[55]
Lin, K.F.; Lee, T.R.; Tsai, P.H.; Hsu, M.P.; Chen, C.S.; Lyu, P.C. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins, 2007, 68(2), 530-540.
[http://dx.doi.org/10.1002/prot.21378] [PMID: 17444520]
[56]
Malayeri, F.A.; Rezeai, A.; Raiesi, O. Antifungal agents: Polyene, azole, antimetabolite, other and future agents. J. Basic Res. Med. Sci., 2018, 5(2), 48-55.
[http://dx.doi.org/10.29252/jbrms.5.2.48]
[57]
Low, C.Y.; Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep., 2011, 3, 14.
[http://dx.doi.org/10.3410/M3-14] [PMID: 21876720]
[58]
De Lucca, A.J.; Cleveland, T.E.; Wedge, D.E. Plant-derived antifungal proteins and peptides. Can. J. Microbiol., 2005, 51(12), 1001-1014.
[http://dx.doi.org/10.1139/w05-063] [PMID: 16462858]
[59]
Aerts, A.M.; François, I.E.; Meert, E.M.; Li, Q.T.; Cammue, B.P.; Thevissen, K. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol., 2007, 13(4), 243-247.
[http://dx.doi.org/10.1159/000104753] [PMID: 17827975]
[60]
Ribeiro, S.M.; William, P.; Silva, O.N.; de Oliveira Santos, M.; Dias, S.C.; Franco, O.L. Plant antifungal peptides.Handbook of Biologically Active Peptides; , 2013, pp. 169-79.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00026-9]
[61]
Wang, H.; Ng, T.B. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem. Biophys. Res. Commun., 2000, 279(2), 407-411.
[http://dx.doi.org/10.1006/bbrc.2000.3929] [PMID: 11118300]
[62]
Zhang, B.; Xie, C.; Wei, Y.; Li, J.; Yang, X. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expr. Purif., 2015, 107, 43-49.
[http://dx.doi.org/10.1016/j.pep.2014.09.008] [PMID: 25245535]
[63]
Wang, H.X.; Ng, T.B. Dendrocin, a distinctive antifungal protein from bamboo shoots. Biochem. Biophys. Res. Commun., 2003, 307(3), 750-755.
[http://dx.doi.org/10.1016/S0006-291X(03)01229-4] [PMID: 12893287]
[64]
Ye, X.Y.; Ng, T.B. Peptides from pinto bean and red bean with sequence homology to cowpea 10-kDa protein precursor exhibit antifungal, mitogenic, and HIV-1 reverse transcriptase-inhibitory activities. Biochem. Biophys. Res. Commun., 2001, 285(2), 424-429.
[http://dx.doi.org/10.1006/bbrc.2001.5194] [PMID: 11444860]
[65]
Ma, X.; Liu, D.; Tang, H.; Wang, Y.; Wu, T.; Li, Y.; Yang, J.; Yang, J.; Sun, S.; Zhang, F. Purification and characterization of a novel antifungal protein with antiproliferation and anti-HIV-1 reverse transcriptase activities from Peganum harmala seeds. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(2), 87-94.
[http://dx.doi.org/10.1093/abbs/gms094] [PMID: 23165744]
[66]
Ye, X.Y.; Ng, T.B. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun., 2000, 273(3), 1111-1115.
[http://dx.doi.org/10.1006/bbrc.2000.3067] [PMID: 10891380]
[67]
Wang, S.; Shao, B.; Rao, P.; Lee, Y.; Ye, X. Hypotin, a novel antipathogenic and antiproliferative protein from peanuts with a sequence similar to those of chitinase precursors. J. Agric. Food Chem., 2007, 55(24), 9792-9799.
[http://dx.doi.org/10.1021/jf071540j] [PMID: 17979231]
[68]
Ye, X.Y.; Ng, T.B. Isolation of vulgin, a new antifungal polypeptide with mitogenic activity from the pinto bean. J. Pept. Sci., 2003, 9(2), 114-119.
[http://dx.doi.org/10.1002/psc.436] [PMID: 12630696]
[69]
Lam, S.K.; Ng, T.B. Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochim. Pol., 2010, 57(3), 299-304.
[http://dx.doi.org/10.18388/abp.2010_2408] [PMID: 20725649]
[70]
Lam, Y.W.; Wang, H.X.; Ng, T.B. A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Commun., 2000, 279(1), 74-80.
[http://dx.doi.org/10.1006/bbrc.2000.3821] [PMID: 11112420]
[71]
Ngai, P.H.; Ng, T.B. Coccinin, an antifungal peptide with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from large scarlet runner beans. Peptides, 2004, 25(12), 2063-2068.
[http://dx.doi.org/10.1016/j.peptides.2004.08.003] [PMID: 15572193]
[72]
Wang, H.; Ye, X.Y.; Ng, T.B. Purification of chrysancorin, a novel antifungal protein with mitogenic activity from garland chrysanthemum seeds. Biol. Chem., 2001, 382(6), 947-951.
[http://dx.doi.org/10.1515/BC.2001.118] [PMID: 11501760]
[73]
Ye, X.; Ng, T.B. Isolation and characterization of juncin, an antifungal protein from seeds of Japanese Takana (Brassica juncea Var. integrifolia). J. Agric. Food Chem., 2009, 57(10), 4366-4371.
[http://dx.doi.org/10.1021/jf8035337] [PMID: 19354248]
[74]
Ye, X.Y.; Ng, T.B. Purification of angularin, a novel antifungal peptide from adzuki beans. J. Pept. Sci., 2002, 8(3), 101-106.
[http://dx.doi.org/10.1002/psc.372] [PMID: 11931582]
[75]
Huang, X.; Xie, W.; Gong, Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett., 2000, 478(1-2), 123-126.
[http://dx.doi.org/10.1016/S0014-5793(00)01834-2] [PMID: 10922482]
[76]
Nielsen, K.K.; Nielsen, J.E.; Madrid, S.M.; Mikkelsen, J.D. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol., 1997, 113(1), 83-91.
[http://dx.doi.org/10.1104/pp.113.1.83] [PMID: 9008390]
[77]
Huang, R-H.; Xiang, Y.; Liu, X-Z.; Zhang, Y.; Hu, Z.; Wang, D.C. Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett., 2002, 521(1-3), 87-90.
[http://dx.doi.org/10.1016/S0014-5793(02)02829-6] [PMID: 12067732]
[78]
Van Parijs, J.; Broekaert, W.F.; Goldstein, I.J.; Peumans, W.J. Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 1991, 183(2), 258-264.
[http://dx.doi.org/10.1007/BF00197797] [PMID: 24193629]
[79]
Kiba, A.; Nishihara, M.; Tsukatani, N.; Nakatsuka, T.; Kato, Y.; Yamamura, S. A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol., 2005, 46(6), 1007-1015.
[http://dx.doi.org/10.1093/pcp/pci109] [PMID: 15840643]
[80]
Ye, X.Y.; Ng, T.B. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci., 2002, 70(10), 1129-1138.
[http://dx.doi.org/10.1016/S0024-3205(01)01473-4] [PMID: 11848297]
[81]
Kumar, S.; Kapoor, V.; Gill, K.; Singh, K.; Xess, I.; Das, S.N.; Dey, S. Antifungal and antiproliferative protein from Cicer arietinum: a bioactive compound against emerging pathogens. BioMed Res. Int., 2014, 2014, 387203
[http://dx.doi.org/10.1155/2014/387203] [PMID: 24963482]
[82]
Wong, J.H.; Ng, T.B. Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill). Peptides, 2003, 24(7), 963-968.
[http://dx.doi.org/10.1016/S0196-9781(03)00192-X] [PMID: 14499273]
[83]
Marcus, J.P.; Green, J.L.; Goulter, K.C.; Manners, J.M. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J., 1999, 19(6), 699-710.
[http://dx.doi.org/10.1046/j.1365-313x.1999.00569.x] [PMID: 10571855]
[84]
Menegnetti, B.T.; Machado, L.D.; Oshiro, K.G.; Nogueira, M.L.; Carvalho, C.M.; Franco, O.L. Antimicrobial peptides from fruits and their potential use as biotechnological tools-a review and outlook. Front. Microbiol., 2017, 7, 2136.
[http://dx.doi.org/10.3389/fmicb.2016.02136] [PMID: 28119671]
[85]
Wang, H.; Ng, T.B. Isolation of an antifungal thaumatin-like protein from kiwi fruits. Phytochemistry, 2002, 61(1), 1-6.
[http://dx.doi.org/10.1016/S0031-9422(02)00144-9] [PMID: 12165295]
[86]
Ye, X.Y.; Wang, H.X.; Ng, T.B. Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem. Biophys. Res. Commun., 2000, 269(1), 155-159.
[http://dx.doi.org/10.1006/bbrc.2000.2115] [PMID: 10694493]
[87]
Ng, T.B.; Wang, H. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci., 2001, 68(7), 739-749.
[http://dx.doi.org/10.1016/S0024-3205(00)00970-X] [PMID: 11205866]
[88]
Narayanasamy, P. Immunology in plant health and its impact on food safety, 1st Ed.; CRC Press, 2005.
[89]
Terras, F.R.; Schoofs, H.M.; De Bolle, M.F.; Van Leuven, F.; Rees, S.B.; Vanderleyden, J.; Cammue, B.P.; Broekaert, W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem., 1992, 267(22), 15301-15309.
[PMID: 1639777]
[90]
Gill, K.; Singh, A.; Kumar, S.; Mishra, B.; Kapoor, V.; Das, S.; Somvanshi, R.; Dey, S. Isolation and characterization of a potent protein from ginger rhizomes having multiple medicinal properties. J. Med. Plants Res., 2012, 6, 160-170.
[http://dx.doi.org/10.3923/rjmp.2012.160.170]
[91]
Kabir, S.R.; Rahman, M.M.; Tasnim, S.; Karim, M.R.; Khatun, N.; Hasan, I.; Amin, R.; Islam, S.S.; Nurujjaman, M.; Kabir, A.H.; Sana, N.K.; Ozeki, Y.; Asaduzzaman, A.K. Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity. Int. J. Biol. Macromol., 2016, 84, 62-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.006] [PMID: 26666429]
[92]
The Lancet. GLOBOCAN 2018: counting the toll of cancer. Lancet, 2018, 392(10152), 985.
[http://dx.doi.org/10.1016/S0140-6736(18)32252-9] [PMID: 30264708]
[93]
Abozaid, S.A.; Baraka, H.N.; Ibrahim, A.S.; Gohar, A.A.; Badria, F.A. Anticancer activity of plant-derived proteins against human tumor cell lines. J. Drug Discov. Ther., 2014, 2(13), 60-69.
[94]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, 2015, 735087
[95]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[96]
Abdullaev, F.I.; de Mejia, E.G. Antitumor effect of plant lectins. Nat. Toxins, 1997, 5(4), 157-163.
[http://dx.doi.org/10.1002/19970504NT6] [PMID: 9407559]
[97]
Jiang, Q.L.; Zhang, S.; Tian, M.; Zhang, S.Y.; Xie, T.; Chen, D.Y.; Chen, Y.J.; He, J.; Liu, J.; Ouyang, L.; Jiang, X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif., 2015, 48(1), 17-28.
[http://dx.doi.org/10.1111/cpr.12155] [PMID: 25488051]
[98]
Bhutia, S.K.; Behera, B.; Nandini Das, D.; Mukhopadhyay, S.; Sinha, N.; Panda, P.K.; Naik, P.P.; Patra, S.K.; Mandal, M.; Sarkar, S.; Menezes, M.E.; Talukdar, S.; Maiti, T.K.; Das, S.K.; Sarkar, D.; Fisher, P.B. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int. J. Cancer, 2016, 139(2), 457-466.
[http://dx.doi.org/10.1002/ijc.30055] [PMID: 26914517]
[99]
Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol., 2008, 445, 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[100]
Fang, E.F.; Zhang, C.Z.; Ng, T.B.; Wong, J.H.; Pan, W.L.; Ye, X.J.; Chan, Y.S.; Fong, W.P. Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev. Res. (Phila.), 2012, 5(1), 109-121.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0203] [PMID: 21933914]
[101]
Dia, V.P.; Krishnan, H.B. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci. Rep., 2016, 6, 33532.
[http://dx.doi.org/10.1038/srep33532] [PMID: 27628414]
[102]
Kennedy, A.R. The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. Am. J. Clin. Nutr., 1998, 68(6)(Suppl.), 1406S-1412S.
[http://dx.doi.org/10.1093/ajcn/68.6.1406S] [PMID: 9848508]
[103]
Fang, E.F.; Hassanien, A.A.; Wong, J.H.; Bah, C.S.; Soliman, S.S.; Ng, T.B. Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 843) with potential medicinal applications. Protein Pept. Lett., 2011, 18(1), 64-72.
[http://dx.doi.org/10.2174/092986611794328726] [PMID: 20955169]
[104]
Clemente, A.; Carmen Marín-Manzano, M.; Jiménez, E.; Carmen Arques, M.; Domoney, C. The anti-proliferative effect of TI1B, a major Bowman-Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br. J. Nutr., 2012, 108(Suppl. 1), S135-S144.
[http://dx.doi.org/10.1017/S000711451200075X] [PMID: 22916809]
[105]
Shaw, P.C.; Lee, K.M.; Wong, K.B. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon, 2005, 45(6), 683-689.
[http://dx.doi.org/10.1016/j.toxicon.2004.12.024] [PMID: 15804517]
[106]
Lei, H.Y.; Chang, C.P. Lectin of Concanavalin A as an anti-hepatoma therapeutic agent. J. Biomed. Sci., 2009, 16, 10.
[http://dx.doi.org/10.1186/1423-0127-16-10] [PMID: 19272170]
[107]
Fang, E.F.; Zhang, C.Z.; Zhang, L.; Wong, J.H.; Chan, Y.S.; Pan, W.L.; Dan, X.L.; Yin, C.M.; Cho, C.H.; Ng, T.B. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One, 2012, 7(9), e41592
[http://dx.doi.org/10.1371/journal.pone.0041592] [PMID: 22957017]
[108]
Lindholm, P.; Göransson, U.; Johansson, S.; Claeson, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Backlund, A. Cyclotides: a novel type of cytotoxic agents. Mol. Cancer Ther., 2002, 1(6), 365-369.
[PMID: 12477048]
[109]
Herrmann, A.; Burman, R.; Mylne, J.S.; Karlsson, G.; Gullbo, J.; Craik, D.J.; Clark, R.J.; Göransson, U. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69(4), 939-952.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.023] [PMID: 18191970]
[110]
He, W.; Chan, L.Y.; Zeng, G.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides, 2011, 32(8), 1719-1723.
[http://dx.doi.org/10.1016/j.peptides.2011.06.016] [PMID: 21723349]
[111]
Fang, E.F.; Pan, W.L.; Wong, J.H.; Chan, Y.S.; Ye, X.J.; Ng, T.B. A new Phaseolus vulgaris lectin induces selective toxicity on human liver carcinoma Hep G2 cells. Arch. Toxicol., 2011, 85(12), 1551-1563.
[http://dx.doi.org/10.1007/s00204-011-0698-x] [PMID: 21445585]
[112]
Fang, E.F.; Zhang, C.Z.; Wong, J.H.; Shen, J.Y.; Li, C.H.; Ng, T.B. The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett., 2012, 324(1), 66-74.
[http://dx.doi.org/10.1016/j.canlet.2012.05.005] [PMID: 22579806]
[113]
Zhang, D.; Halaweish, F.T. Isolation and characterization of ribosome-inactivating proteins from Cucurbitaceae. Chem. Biodivers., 2007, 4(3), 431-442.
[http://dx.doi.org/10.1002/cbdv.200790035] [PMID: 17372945]
[114]
Ferreras, J.M.; Barbieri, L.; Girbés, T.; Battelli, M.G.; Rojo, M.A.; Arias, F.J.; Rocher, M.A.; Soriano, F.; Mendéz, E.; Stirpe, F. Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). Biochim. Biophys. Acta, 1993, 1216(1), 31-42.
[http://dx.doi.org/10.1016/0167-4781(93)90034-B] [PMID: 8218413]
[115]
Bolognesi, A.; Olivieri, F.; Battelli, M.G.; Barbieri, L.; Falasca, A.I.; Parente, A.; Del Vecchio Blanco, F.; Stirpe, F. Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of Saponaria ocymoides and Vaccaria pyramidata. Eur. J. Biochem., 1995, 228(3), 935-940.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20343.x] [PMID: 7737197]
[116]
Di Massimo, A.M.; Di Loreto, M.; Pacilli, A.; Raucci, G.; D’Alatri, L.; Mele, A.; Bolognesi, A.; Polito, L.; Stirpe, F.; De Santis, R. Immunoconjugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br. J. Cancer, 1997, 75(6), 822-828.
[http://dx.doi.org/10.1038/bjc.1997.147] [PMID: 9062402]
[117]
Falini, B.; Bolognesi, A.; Flenghi, L.; Tazzari, P.L.; Broe, M.K.; Stein, H.; Dürkop, H.; Aversa, F.; Corneli, P.; Pizzolo, G.; Pizzolo, G.; Stripe, F.; Sabattini, E.; Pileri, S. Response of refractory Hodgkin’s disease to monoclonal anti-CD30 immunotoxin. Lancet, 1992, 339(8803), 1195-1196.
[http://dx.doi.org/10.1016/0140-6736(92)91135-U] [PMID: 1349939]
[118]
Bolognesi, A.; Barbieri, L.; Abbondanza, A.; Falasca, A.I.; Carnicelli, D.; Battelli, M.G.; Stirpe, F. Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. Biochim. Biophys. Acta, 1990, 1087(3), 293-302.
[http://dx.doi.org/10.1016/0167-4781(90)90002-J] [PMID: 2248976]
[119]
Hew, C.S.; Khoo, B.Y.; Gam, L.H. The anti-cancer property of proteins extracted from Gynura procumbens (Lour.) Merr. PLoS One, 2013, 8(7), e68524
[http://dx.doi.org/10.1371/journal.pone.0068524] [PMID: 23874655]
[120]
Ng, T.B.; Lam, S.K.; Fong, W.P. A homodimeric sporamin-type trypsin inhibitor with antiproliferative, HIV reverse transcriptase-inhibitory and antifungal activities from wampee (Clausena lansium) seeds. Biol. Chem., 2003, 384(2), 289-293.
[http://dx.doi.org/10.1515/BC.2003.032] [PMID: 12675522]
[121]
Fan, X. He, L.; Meng, Y.; Li, G.; Li, L.; Meng, Y. A-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Mol. Med. Rep., 2015, 11(5), 3553-3558.
[http://dx.doi.org/10.3892/mmr.2015.3176] [PMID: 25573293]
[122]
Wong, J.H.; Chan, H.Y.; Ng, T.B. A mannose/glucose-specific lectin from Chinese evergreen chinkapin (Castanopsis chinensis). Biochim. Biophys. Acta, 2008, 1780(9), 1017-1022.
[http://dx.doi.org/10.1016/j.bbagen.2008.05.007] [PMID: 18570898]
[123]
Nawrot, R.; Wolun-Cholewa, M.; Bialas, W.; Wyrzykowska, D.; Balcerkiewicz, S.; Gozdzicka-Jozefiak, A. Cytotoxic activity of proteins isolated from extracts of Corydalis cava tubers in human cervical carcinoma HeLa cells. BMC Complement. Altern. Med., 2010, 10(1), 78.
[http://dx.doi.org/10.1186/1472-6882-10-78] [PMID: 21167042]
[124]
Dhuna, V.; Bains, J.S.; Kamboj, S.S.; Singh, J.; Kamboj, S.; Saxena, A.K. Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. J. Biochem. Mol. Biol., 2005, 38(5), 526-532.
[PMID: 16202230]
[125]
Liu, B.; Min, M.W.; Bao, J.K. Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells. Autophagy, 2009, 5(3), 432-433.
[http://dx.doi.org/10.4161/auto.5.3.7924] [PMID: 19202354]
[126]
Oza, V.P.; Parmar, P.P.; Kumar, S.; Subramanian, R.B. Anticancer properties of highly purified L-asparaginase from Withania somnifera L. against acute lymphoblastic leukemia. Appl. Biochem. Biotechnol., 2010, 160(6), 1833-1840.
[http://dx.doi.org/10.1007/s12010-009-8667-z] [PMID: 19448978]
[127]
Clemente, A.; Moreno, F.J.; Marín-Manzano, Mdel.C.; Jiménez, E.; Domoney, C. The cytotoxic effect of Bowman-Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol. Nutr. Food Res., 2010, 54(3), 396-405.
[http://dx.doi.org/10.1002/mnfr.200900122] [PMID: 19885848]
[128]
Lin, J.Y.; Lei, L.L.; Tung, T.C. Purification of abrin from Abrus precatorius L. Leguminosae. Taiwan Yi Xue Hui Za Zhi. Journal of the Formosan Medical Association , 1969, 68(10), 518-521.
[PMID: 5264179]
[129]
Olsnes, S.; Pihl, A. Isolation and properties of abrin: a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur. J. Biochem., 1973, 35(1), 179-185.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb02823.x] [PMID: 4123356]
[130]
Sinha, N.; Panda, P.K.; Naik, P.P.; Maiti, T.K.; Bhutia, S.K. Abrus agglutinin targets cancer stem-like cells by eliminating self-renewal capacity accompanied with apoptosis in oral squamous cell carcinoma. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317701634] [PMID: 28459216]
[131]
Mukhopadhyay, S.; Panda, P.K.; Das, D.N.; Sinha, N.; Behera, B.; Maiti, T.K.; Bhutia, S.K. Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death. Acta Pharmacol. Sin., 2014, 35(6), 814-824.
[http://dx.doi.org/10.1038/aps.2014.15] [PMID: 24793310]
[132]
Tsao, S.W.; Yan, K.T.; Yeung, H.W. Selective killing of choriocarcinoma cells in vitro by trichosanthin, a plant protein purified from root tubers of the Chinese medicinal herb Trichosanthes kirilowii. Toxicon, 1986, 24(8), 831-840.
[http://dx.doi.org/10.1016/0041-0101(86)90108-X] [PMID: 3775798]
[133]
Tang, J.; Wang, C.K.; Pan, X.; Yan, H.; Zeng, G.; Xu, W.; He, W.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of bioactive cyclotides from Viola labridorica. Helv. Chim. Acta, 2010, 93(11), 2287-2295.
[http://dx.doi.org/10.1002/hlca.201000115]
[134]
Gerlach, S.L.; Burman, R.; Bohlin, L.; Mondal, D.; Göransson, U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J. Nat. Prod., 2010, 73(7), 1207-1213.
[http://dx.doi.org/10.1021/np9007365] [PMID: 20575512]
[135]
Yeshak, M.Y.; Burman, R.; Asres, K.; Göransson, U. Cyclotides from an extreme habitat: characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. J. Nat. Prod., 2011, 74(4), 727-731.
[http://dx.doi.org/10.1021/np100790f] [PMID: 21434649]
[136]
Tang, J.; Wang, C.K.; Pan, X.; Yan, H.; Zeng, G.; Xu, W.; He, W.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides, 2010, 31(8), 1434-1440.
[http://dx.doi.org/10.1016/j.peptides.2010.05.004] [PMID: 20580652]
[137]
Stirpe, F.; Barbieri, L.; Battelli, M.G.; Falasca, A.I.; Abbondanza, A.; Lorenzoni, E.; Stevens, W.A. Bryodin, a ribosome-inactivating protein from the roots of Bryonia dioica L. (white bryony). Biochem. J., 1986, 240(3), 659-665.
[http://dx.doi.org/10.1042/bj2400659] [PMID: 3827858]
[138]
Chan, Y.S.; Ng, T.B. Bauhinia variegata var. variegata lectin: isolation, characterization, and comparison. Appl. Biochem. Biotechnol., 2015, 175(1), 75-84.
[http://dx.doi.org/10.1007/s12010-014-1261-z] [PMID: 25240852]
[139]
Lin, P.; Ng, T.B. Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. J. Agric. Food Chem., 2008, 56(22), 10481-10486.
[http://dx.doi.org/10.1021/jf8016332] [PMID: 18942841]
[140]
Caccialupi, P.; Ceci, L.R.; Siciliano, R.A.; Pignone, D.; Clemente, A.; Sonnante, G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chem., 2010, 120(4), 1058-1066.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.051]
[141]
Grangeiro, T.B.; Schriefer, A.; Calvete, J.J.; Raida, M.; Urbanke, C.; Barral-Netto, M.; Cavada, B.S. Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. Eur. J. Biochem., 1997, 248(1), 43-48.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00043.x] [PMID: 9310358]
[142]
Delatorre, P.; Rocha, B.A.; Gadelha, C.A.; Santi-Gadelha, T.; Cajazeiras, J.B.; Souza, E.P.; Nascimento, K.S.; Freire, V.N.; Sampaio, A.H.; Azevedo, W.F., Jr; Cavada, B.S. Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J. Struct. Biol., 2006, 154(3), 280-286.
[http://dx.doi.org/10.1016/j.jsb.2006.03.011] [PMID: 16677825]
[143]
Xu, X.; Wu, C.; Liu, C.; Luo, Y.; Li, J.; Zhao, X.; Damme, E.V.; Bao, J. Purification and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior Blume with antiproliferative activity. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(7), 507-519.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00305.x] [PMID: 17622470]
[144]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Chemopreventive properties of Peptide Lunasin: a review. Protein Pept. Lett., 2013, 20(4), 424-432.
[PMID: 23016582]
[145]
Trung, N.N.; Tho, N.T.; Dung, B.T.T.; Nhung, H.T.M.; Thang, N.D. Effects of ricin extracted from seeds of the castor bean (ricinuscommunis) on cytotoxicity and tumorigenesis of melanoma cells. Biomed. Res. Ther., 2016, 3(5), 1-12.
[http://dx.doi.org/10.7603/s40730-016-0023-7]
[146]
Bolognesi, A.; Polito, L.; Olivieri, F.; Valbonesi, P.; Barbieri, L.; Battelli, M.G.; Carusi, M.V.; Benvenuto, E.; Del Vecchio Blanco, F.; Di Maro, A.; Parente, A.; Di Loreto, M.; Stirpe, F. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd. Planta, 1997, 203(4), 422-429.
[http://dx.doi.org/10.1007/s004250050209] [PMID: 9421927]
[147]
Han, S.Y.; Hong, C.E.; Kim, H.G.; Lyu, S.Y. Anti-cancer effects of enteric-coated polymers containing mistletoe lectin in murine melanoma cells in vitro and in vivo. Mol. Cell. Biochem., 2015, 408(1-2), 73-87.
[http://dx.doi.org/10.1007/s11010-015-2484-1] [PMID: 26152904]
[148]
Franz, H.; Ziska, P.; Kindt, A. Isolation and properties of three lectins from mistletoe (Viscum album L.). Biochem. J., 1981, 195(2), 481-484.
[http://dx.doi.org/10.1042/bj1950481] [PMID: 7316963]
[149]
Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Li, C.M.; Wu, K.Y.; Chen, S.L.; Yen, H.F.; Wu, Y.C. Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL. Chem. Pharm. Bull. (Tokyo), 2005, 53(3), 336-338.
[http://dx.doi.org/10.1248/cpb.53.336] [PMID: 15744111]
[150]
Vago, R.; Marsden, C.J.; Lord, J.M.; Ippoliti, R.; Flavell, D.J.; Flavell, S.U.; Ceriotti, A.; Fabbrini, M.S. Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. The FEBS , 2005, 272(19), 4983-4995.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04908.x] [PMID: 16176271]
[151]
Walsh, M.J.; Dodd, J.E.; Hautbergue, G.M. Ribosome-inactivating proteins: potent poisons and molecular tools. Virulence, 2013, 4(8), 774-784.
[http://dx.doi.org/10.4161/viru.26399] [PMID: 24071927]
[152]
Park, S.W.; Prithiviraj, B.; Vepachedu, R.; Vivanco, J.M. Isolation and purification of ribosome-inactivating proteins. Methods Mol. Biol., 2006, 318, 335-347.
[PMID: 16673928]
[153]
Bolognesi, A.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Polito, L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules, 2016, 21(12), E1627
[http://dx.doi.org/10.3390/molecules21121627] [PMID: 27898041]
[154]
de Virgilio, M.; Lombardi, A.; Caliandro, R.; Fabbrini, M.S. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel), 2010, 2(11), 2699-2737.
[http://dx.doi.org/10.3390/toxins2112699] [PMID: 22069572]
[155]
Wang, S.; Li, Z.; Li, S.; Di, R.; Ho, C.T.; Yang, G. Ribosome-inactivating proteins (RIPs) and their important health promoting property. RSC Advances, 2016, 6(52), 46794-46805.
[http://dx.doi.org/10.1039/C6RA02946A]
[156]
Stirpe, F.; Barbieri, L.; Battelli, M.G.; Soria, M.; Lappi, D.A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N. Y.), 1992, 10(4), 405-412.
[http://dx.doi.org/10.1038/nbt0492-405] [PMID: 1368484]
[157]
Puri, M.; Kaur, I.; Perugini, M.A.; Gupta, R.C. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov. Today, 2012, 17(13-14), 774-783.
[http://dx.doi.org/10.1016/j.drudis.2012.03.007] [PMID: 22484096]
[158]
Sha, O.; Niu, J.; Ng, T.B.; Cho, E.Y.; Fu, X.; Jiang, W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother. Pharmacol., 2013, 71(6), 1387-1393.
[http://dx.doi.org/10.1007/s00280-013-2096-y] [PMID: 23377374]
[159]
Pizzo, E.; Di Maro, A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J. Biomed. Sci., 2016, 23(1), 54.
[http://dx.doi.org/10.1186/s12929-016-0272-1] [PMID: 27439918]
[160]
Poyet, J.L.; Hoeveler, A. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett., 1997, 406(1-2), 97-100.
[http://dx.doi.org/10.1016/S0014-5793(97)00250-0] [PMID: 9109394]
[161]
Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.L.; Huang, P.; Huang, H.I.; Chen, H.C. TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA, 1991, 88(15), 6570-6574.
[http://dx.doi.org/10.1073/pnas.88.15.6570] [PMID: 1713684]
[162]
Kishida, K.; Masuho, Y.; Hara, T. Protein-synthesis inhibitory protein from seeds of Luffa cylindria roem. FEBS Lett., 1983, 153(1), 209-212.
[http://dx.doi.org/10.1016/0014-5793(83)80149-5] [PMID: 19552007]
[163]
Schrot, J.; Weng, A.; Melzig, M.F. Ribosome-inactivating and related proteins. Toxins (Basel), 2015, 7(5), 1556-1615.
[http://dx.doi.org/10.3390/toxins7051556] [PMID: 26008228]
[164]
Kaur, I.; Yadav, S.K.; Hariprasad, G.; Gupta, R.C.; Srinivasan, A.; Batra, J.K.; Puri, M. Balsamin, a novel ribosome-inactivating protein from the seeds of Balsam apple Momordica balsamina. Amino Acids, 2012, 43(2), 973-981.
[http://dx.doi.org/10.1007/s00726-011-1162-1] [PMID: 22120616]
[165]
Battelli, M.G.; Citores, L.; Buonamici, L.; Ferreras, J.M.; de Benito, F.M.; Stirpe, F.; Girbés, T. Toxicity and cytotoxicity of nigrin b, a two-chain ribosome-inactivating protein from Sambucus nigra: comparison with ricin. Arch. Toxicol., 1997, 71(6), 360-364.
[http://dx.doi.org/10.1007/s002040050399] [PMID: 9195017]
[166]
Ferreras, J.M.; Citores, L.; Iglesias, R.; Jiménez, P.; Girbés, T. Use of ribosome-inactivating proteins from Sambucus for the construction of immunotoxins and conjugates for cancer therapy. Toxins (Basel), 2011, 3(5), 420-441.
[http://dx.doi.org/10.3390/toxins3050420] [PMID: 22069717]
[167]
Zhang, D.; Halaweish, F.T. Isolation and identification of foetidissimin: a novel ribosome-inactivating protein from Cucurbita foetidissima. Plant Sci., 2003, 164(3), 387-393.
[http://dx.doi.org/10.1016/S0168-9452(02)00425-9]
[168]
Iglesias, R.; Pérez, Y.; de Torre, C.; Ferreras, J.M.; Antolín, P.; Jiménez, P.; Rojo, M.A.; Méndez, E.; Girbés, T. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J. Exp. Bot., 2005, 56(416), 1675-1684.
[http://dx.doi.org/10.1093/jxb/eri164] [PMID: 15863448]
[169]
Desmyter, S.; Vandenbussche, F.; Hao, Q.; Proost, P.; Peumans, W.J.; Van Damme, E.J. Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance? Plant Mol. Biol., 2003, 51(4), 567-576.
[http://dx.doi.org/10.1023/A:1022389205295] [PMID: 12650622]
[170]
Van Damme, E.J.; Barre, A.; Barbieri, L.; Valbonesi, P.; Rouge, P.; Van Leuven, F.; Stirpe, F.; Peumans, W.J. Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. Biochem. J., 1997, 324(Pt 3), 963-970.
[http://dx.doi.org/10.1042/bj3240963] [PMID: 9210423]
[171]
Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmacol. Ther., 1992, 55(3), 279-302.
[http://dx.doi.org/10.1016/0163-7258(92)90053-3] [PMID: 1492120]
[172]
Olsnes, S.; Stirpe, F.; Sandvig, K.; Pihl, A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem., 1982, 257(22), 13263-13270.
[PMID: 7142144]
[173]
Kwon, S.Y.; An, C.S.; Liu, J.R.; Paek, K.H. A ribosome-inactivating protein from Amaranthus viridis. Biosci. Biotechnol. Biochem., 1997, 61(9), 1613-1614.
[http://dx.doi.org/10.1271/bbb.61.1613] [PMID: 9339569]
[174]
Park, J.S.; Hwang, D.J.; Lee, S.M.; Kim, Y.T.; Choi, S.B.; Cho, K.J. Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album. Mol. Cells, 2004, 17(1), 73-80.
[PMID: 15055531]
[175]
Shih, N.J.; McDonald, K.A.; Girbés, T.; Iglesias, R.; Kohlhoff, A.J.; Jackman, A.P. Ribosome-inactivating proteins (RIPs) of wild Oregon cucumber (Marah oreganus). Biol. Chem., 1998, 379(6), 721-725.
[PMID: 9687022]
[176]
Shu, S.H.; Xie, G.Z.; Guo, X.L.; Wang, M. Purification and characterization of a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii Maxim. Protein Expr. Purif., 2009, 67(2), 120-125.
[http://dx.doi.org/10.1016/j.pep.2009.03.004] [PMID: 19303444]
[177]
Wong, R.N.S.; Dong, T.X.; Ng, T.B.; Choi, W.T.; Yeung, H.W. α-Kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with β-kirilowin and other related proteins. Int. J. Pept. Protein Res., 1996, 47(1-2), 103-109.
[http://dx.doi.org/10.1111/j.1399-3011.1996.tb00816.x] [PMID: 8907506]
[178]
Dong, T.X.; Ng, T.B.; Yeung, H.W.; Wong, R.N. Isolation and characterization of a novel ribosome-inactivating protein, β-kirilowin, from the seeds of Trichosanthes kirilowii. Biochem. Biophys. Res. Commun., 1994, 199(1), 387-393.
[http://dx.doi.org/10.1006/bbrc.1994.1241] [PMID: 8123040]
[179]
Stirpe, F.; Gilabert-Oriol, R. Ribosome-inactivating proteins: an overview. Gopalakrishnakone, P.; Carlini, C.R.; Ligabue-brawn, R. Ed.; Plant Toxins: Dordrecht,. 2015, 1-29.
[180]
Minami, Y.; Yamaguchi, K.; Yagi, F.; Tadera, K.; Funatsu, G. Isolation and amino acid sequence of a protein-synthesis inhibitor from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem., 1998, 62(6), 1152-1156.
[http://dx.doi.org/10.1271/bbb.62.1152] [PMID: 9692198]
[181]
Rajamohan, F.; Venkatachalam, T.K.; Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem. Biophys. Res. Commun., 1999, 260(2), 453-458.
[http://dx.doi.org/10.1006/bbrc.1999.0922] [PMID: 10403789]
[182]
Barbieri, L.; Aron, G.M.; Irvin, J.D.; Stirpe, F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem. J., 1982, 203(1), 55-59.
[http://dx.doi.org/10.1042/bj2030055] [PMID: 7103950]
[183]
Chen, R.; Xu, Y.Z.; Wu, J.; Pu, Z.; Jin, S.W.; Liu, W.Y.; Xia, Z.X. Purification and characterization of trichomaglin--a novel ribosome-inactivating protein with abortifacient activity. Biochem. Mol. Biol. Int., 1999, 47(2), 185-193.
[http://dx.doi.org/10.1080/15216549900201193] [PMID: 10205663]
[184]
Stirpe, F.; Legg, R.F.; Onyon, L.J.; Ziska, P.; Franz, H. Inhibition of protein synthesis by a toxic lectin from Viscum album L. (mistletoe). Biochem. J., 1980, 190(3), 843-845.
[http://dx.doi.org/10.1042/bj1900843] [PMID: 7470084]
[185]
Tsang, K.Y.; Ng, T.B. Isolation and characterization of a new ribosome inactivating protein, momorgrosvin, from seeds of the monk’s fruit Momordica grosvenorii. Life Sci., 2001, 68(7), 773-784.
[http://dx.doi.org/10.1016/S0024-3205(00)00980-2] [PMID: 11205869]
[186]
Lam, S.S.; Wang, H.; Ng, T.B. Purification and characterization of novel ribosome inactivating proteins, alpha- and beta-pisavins, from seeds of the garden pea Pisum sativum. Biochem. Biophys. Res. Commun., 1998, 253(1), 135-142.
[http://dx.doi.org/10.1006/bbrc.1998.9764] [PMID: 9875233]
[187]
Li, X.D.; Liu, W.Y.; Niu, C.L. Purification of a new ribosome-inactivating protein from the seeds of Cinnamomum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biol. Chem., 1996, 377(12), 825-831.
[PMID: 8997493]
[188]
Lee-Huang, S.; Kung, H.F.; Huang, P.L.; Huang, P.L.; Li, B-Q.; Huang, P.; Huang, H.I.; Chen, H.C. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett., 1991, 291(1), 139-144.
[http://dx.doi.org/10.1016/0014-5793(91)81122-O] [PMID: 1936243]
[189]
Ng, T.B.; Wong, R.N.; Yeung, H.W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae). Biochem. Int., 1992, 27(2), 197-207.
[PMID: 1503559]
[190]
Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem., 1987, 262(17), 8128-8130.
[PMID: 3036799]
[191]
Wei, C.H.; Koh, C. Crystalline ricin D, a toxic anti-tumor lectin from seeds of Ricinus communis. J. Biol. Chem., 1978, 253(6), 2061-2066.
[PMID: 632256]
[192]
Ng, T.B.; Feng, Z.; Li, W.; Yeung, H. Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of trichosanthes cucumeroides (cucurbitaceae). Int. J. Biochem., 1991, 23(5-6), 561-567.
[193]
Yeung, H.W.; Li, W.W. β-trichosanthin: a new abortifacient protein from the Chinese drug, wangua, Trichosanthes cucumeroides. Int. J. Pept. Protein Res., 1987, 29(3), 289-292.
[http://dx.doi.org/10.1111/j.1399-3011.1987.tb02256.x] [PMID: 3596896]
[194]
Ng, T.B.; Chan, W.Y.; Yeung, H.W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen. Pharmacol., 1992, 23(4), 579-590.
[http://dx.doi.org/10.1016/0306-3623(92)90131-3] [PMID: 1397965]
[195]
Olsnes, S.; Haylett, T.; Refsnes, K. Purification and characterization of the highly toxic lectin modeccin. J. Biol. Chem., 1978, 253(14), 5069-5073.
[PMID: 97288]
[196]
Barbieri, L.; Zamboni, M.; Montanaro, L.; Sperti, S.; Stirpe, F. Purification and properties of different forms of modeccin, the toxin of Adenia digitata. Separation of subunits with inhibitory and lectin activity. Biochem. J., 1980, 185(1), 203-210.
[http://dx.doi.org/10.1042/bj1850203] [PMID: 7378047]
[197]
Chupradit, K.; Moonmuang, S.; Nangola, S.; Kitidee, K.; Yasamut, U.; Mougel, M.; Tayapiwatana, C. Current peptide and protein candidates challenging HIV therapy beyond the vaccine era. Viruses, 2017, 9(10), E281
[http://dx.doi.org/10.3390/v9100281] [PMID: 28961190]
[198]
Wang, G. Natural antimicrobial peptides as promising anti-HIV candidates. Curr. Top. Pept. Protein Res., 2012, 13, 93-110.
[PMID: 26834391]
[199]
Mazalovska, M.; Kouokam, J.C. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. BioMed Res. Int., 2018, 2018, 3750646
[http://dx.doi.org/10.1155/2018/3750646] [PMID: 29854749]
[200]
Naider, F.; Anglister, J. Peptides in the treatment of AIDS. Curr. Opin. Struct. Biol., 2009, 19(4), 473-482.
[http://dx.doi.org/10.1016/j.sbi.2009.07.003] [PMID: 19632107]
[201]
Gerlach, S.L.; Debasis, M. The bountiful biological activities of cyclotides. Chron Young Sci., 2012, 3(3), 169.
[http://dx.doi.org/10.4103/2229-5186.99559]
[202]
Wang, J.H.; Nie, H.L.; Tam, S.C.; Huang, H.; Zheng, Y.T. Anti-HIV-1 property of trichosanthin correlates with its ribosome inactivating activity. FEBS Lett., 2002, 531(2), 295-298.
[http://dx.doi.org/10.1016/S0014-5793(02)03539-1] [PMID: 12417329]
[203]
Lee-Huang, S.; Huang, P.L.; Nara, P.L.; Chen, H.C.; Kung, H.F.; Huang, P.; Huang, H.I.; Huang, P.L. MAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett., 1990, 272(1-2), 12-18.
[http://dx.doi.org/10.1016/0014-5793(90)80438-O] [PMID: 1699801]
[204]
Uckun, F.M.; Chelstrom, L.M.; Tuel-Ahlgren, L.; Dibirdik, I.; Irvin, J.D.; Langlie, M.C.; Myers, D.E. TXU (anti-CD7)-pokeweed antiviral protein as a potent inhibitor of human immunodeficiency virus. Antimicrob. Agents Chemother., 1998, 42(2), 383-388.
[PMID: 9527790]
[205]
Daly, N.L.; Gustafson, K.R.; Craik, D.J. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett., 2004, 574(1-3), 69-72.
[http://dx.doi.org/10.1016/j.febslet.2004.08.007] [PMID: 15358541]
[206]
Gustafson, K.R.; Walton, L.K.; Sowder, R.C., Jr; Johnson, D.G.; Pannell, L.K.; Cardellina, J.H., Jr; Boyd, M.R. New circulin macrocyclic polypeptides from Chassalia parvifolia. J. Nat. Prod., 2000, 63(2), 176-178.
[http://dx.doi.org/10.1021/np990432r] [PMID: 10691702]
[207]
Wang, C.K.; Colgrave, M.L.; Gustafson, K.R.; Ireland, D.C.; Goransson, U.; Craik, D.J. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J. Nat. Prod., 2008, 71(1), 47-52.
[http://dx.doi.org/10.1021/np070393g] [PMID: 18081258]
[208]
Bokesch, H.R.; Pannell, L.K.; Cochran, P.K.; Sowder, R.C., II; McKee, T.C.; Boyd, M.R. A novel anti-HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod., 2001, 64(2), 249-250.
[http://dx.doi.org/10.1021/np000372l] [PMID: 11430013]
[209]
Hallock, Y.F.; Sowder, R.C., II; Pannell, L.K.; Hughes, C.B.; Johnson, D.G.; Gulakowski, R.; Cardellina, J.H., II; Boyd, M.R.; Cycloviolins, A. Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J. Org. Chem., 2000, 65(1), 124-128.
[http://dx.doi.org/10.1021/jo990952r] [PMID: 10813905]
[210]
Sindhura, B.R.; Reddy, H. Vishwanath.; Inamdar, S.R.; and Swamy, B.M.; Lectins: Magic Bullet towards HIV Gp120. J. Antivir. Antiretrovir., 2012, 4, 101-102.
[211]
Zhao, W.; Feng, D.; Sun, S.; Han, T.; Sui, S. The anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(2), 91-97.
[http://dx.doi.org/10.1093/abbs/gmp111] [PMID: 20119629]
[212]
Lee-Huang, S.; Huang, P.L.; Huang, P.L.; Bourinbaiar, A.S.; Chen, H.C.; Kung, H.F. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8818-8822.
[http://dx.doi.org/10.1073/pnas.92.19.8818] [PMID: 7568024]
[213]
Yadav, S.K.; Batra, J.K. Mechanism of anti-HIV activity of ribosome inactivating protein, saporin. Protein Pept. Lett., 2015, 22(6), 497-503.
[http://dx.doi.org/10.2174/0929866522666150428120701] [PMID: 25925771]
[214]
Cheung, A.H.; Ng, T.B. Isolation and characterization of a trypsin-chymotrypsin inhibitor from the seeds of green lentil (Lens culinaris). Protein Pept. Lett., 2007, 14(9), 859-864.
[http://dx.doi.org/10.2174/092986607782110310] [PMID: 18045226]
[215]
Wong, J.H.; Ng, T.B. Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. Biochem. Biophys. Res. Commun., 2003, 301(2), 545-550.
[http://dx.doi.org/10.1016/S0006-291X(02)03080-2] [PMID: 12565897]
[216]
Bokesch, H.R.; Charan, R.D.; Meragelman, K.M.; Beutler, J.A.; Gardella, R.; O’Keefe, B.R.; McKee, T.C.; McMahon, J.B. Isolation and characterization of anti-HIV peptides from Dorstenia contrajerva and Treculia obovoidea. FEBS Lett., 2004, 567(2-3), 287-290.
[http://dx.doi.org/10.1016/j.febslet.2004.04.085] [PMID: 15178338]
[217]
Daly, N.L.; Gustafson, K.R.; Craik, D.J. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett., 2004, 574(1-3), 69-72.
[http://dx.doi.org/10.1016/j.febslet.2004.08.007] [PMID: 15358541]
[218]
Daly, N.L.; Clark, R.J.; Plan, M.R.; Craik, D.J. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem. J., 2006, 393(Pt 3), 619-626.
[http://dx.doi.org/10.1042/BJ20051371] [PMID: 16207177]
[219]
Gustafson, K.R.; Sowder, R.C.; Henderson, L.E.; Parsons, I.C.; Kashman, Y.; Cardellina, J.H.; McMahon, J.B.; Buckheit, R.W., Jr; Pannell, L.K.; Boyd, M.R. Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J. Am. Chem. Soc., 1994, 116(20), 9337-9338.
[http://dx.doi.org/10.1021/ja00099a064]
[220]
Bokesch, H.R.; Pannell, L.K.; Cochran, P.K.; Sowder, R.C., II; McKee, T.C.; Boyd, M.R. A novel anti-HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod., 2001, 64(2), 249-250.
[http://dx.doi.org/10.1021/np000372l] [PMID: 11430013]
[221]
Gerlach, S.L.; Burman, R.; Bohlin, L.; Mondal, D.; Göransson, U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J. Nat. Prod., 2010, 73(7), 1207-1213.
[http://dx.doi.org/10.1021/np9007365] [PMID: 20575512]
[222]
Ireland, D.C.; Wang, C.K.; Wilson, J.A.; Gustafson, K.R.; Craik, D.J. Cyclotides as natural anti-HIV agents. Biopolymers, 2008, 90(1), 51-60.
[http://dx.doi.org/10.1002/bip.20886] [PMID: 18008336]
[223]
Chen, B.; Colgrave, M.L.; Daly, N.L.; Rosengren, K.J.; Gustafson, K.R.; Craik, D.J. Isolation and characterization of novel cyclotides from Viola hederaceae: solution structure and anti-HIV activity of vhl-1, a leaf-specific expressed cyclotide. J. Biol. Chem., 2005, 280(23), 22395-22405.
[http://dx.doi.org/10.1074/jbc.M501737200] [PMID: 15824119]
[224]
Jiratchariyakul, W.; Wiwat, C.; Vongsakul, M.; Somanabandhu, A.; Leelamanit, W.; Fujii, I.; Suwannaroj, N.; Ebizuka, Y. HIV inhibitor from Thai bitter gourd. Planta Med., 2001, 67(4), 350-353.
[http://dx.doi.org/10.1055/s-2001-14323] [PMID: 11458453]
[225]
Losso, J.N. The biochemical and functional food properties of the bowman-birk inhibitor. Crit. Rev. Food Sci. Nutr., 2008, 48(1), 94-118.
[http://dx.doi.org/10.1080/10408390601177589] [PMID: 18274967]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy