Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR

Author(s): Angeles Edith Espino-Saldaña, Roberto Rodríguez-Ortiz, Elizabeth Pereida-Jaramillo and Ataúlfo Martínez-Torres*

Volume 18, Issue 2, 2020

Page: [136 - 152] Pages: 17

DOI: 10.2174/1570159X17666191001145550

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Danio rerio is a powerful experimental model for studies in genetics and development. Recently, CRISPR technology has been applied in this species to mimic various human diseases, including those affecting the nervous system. Zebrafish offer multiple experimental advantages: external embryogenesis, rapid development, transparent embryos, short life cycle, and basic neurobiological processes shared with humans. This animal model, together with the CRISPR system, emerging imaging technologies, and novel behavioral approaches, lay the basis for a prominent future in neuropathology and will undoubtedly accelerate our understanding of brain function and its disorders.

Objective: Gather relevant findings from studies that have used CRISPR technologies in zebrafish to explore basic neuronal function and model human diseases.

Methods: We systematically reviewed the most recent literature about CRISPR technology applications for understanding brain function and neurological disorders in D. rerio. We highlighted the key role of CRISPR in driving forward our understanding of particular topics in neuroscience.

Results: We show specific advances in neurobiology when the CRISPR system has been applied in zebrafish and describe how CRISPR is accelerating our understanding of brain organization.

Conclusion: Today, CRISPR is the preferred method to modify genomes of practically any living organism. Despite the rapid development of CRISPR technologies to generate disease models in zebrafish, more efforts are needed to efficiently combine different disciplines to find the etiology and treatments for many brain diseases.

Keywords: Brain disease models, Danio rerio, genome engineering, zebrafish, optogenetics, CRISPR.

Graphical Abstract
[1]
Walker, C.; Streisinger, G. Induction of mutations by gamma-rays in pregonial germ cells of Zebrafish embryos. Genetics, 1983, 103(1), 125-136.
[PMID: 17246099]
[2]
Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn., 1995, 203(3), 253-310.
[http://dx.doi.org/10.1002/aja.1002030302] [PMID: 8589427]
[3]
Dorsemans, A-C.; Soulé, S.; Weger, M.; Bourdon, E.; Lefebvre d’Hellencourt, C.; Meilhac, O.; Diotel, N. Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. J. Comp. Neurol., 2017, 525(3), 442-458.
[http://dx.doi.org/10.1002/cne.24065] [PMID: 27339277]
[4]
Varshney, G.K.; Sood, R.; Burgess, S.M. Understanding and Editing the Zebrafish Genome. Adv. Genet., 2015, 92, 1-52.
[http://dx.doi.org/10.1016/bs.adgen.2015.09.002] [PMID: 26639914]
[5]
Mueller, T.; Wullimann, M.F.; Guo, S. Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J. Comp. Neurol., 2008, 507(2), 1245-1257.
[http://dx.doi.org/10.1002/cne.21604] [PMID: 18181142]
[6]
Schmidt, R.; Strähle, U.; Scholpp, S.; Altman, J.; Das, G.; Altman, J.; Lois, C.; Alvarez-Buylla, A.; Gage, F.; Coates, P. Neurogenesis in zebrafish - from embryo to adult. Neural Dev., 2013, 8(1), 3.
[http://dx.doi.org/10.1186/1749-8104-8-3] [PMID: 23433260]
[7]
Randlett, O.; Wee, C.L.; Naumann, E.A.; Nnaemeka, O.; Schoppik, D.; Fitzgerald, J.E.; Portugues, R.; Lacoste, A.M.B.; Riegler, C.; Engert, F.; Schier, A.F. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods, 2015, 12(11), 1039-1046.
[http://dx.doi.org/10.1038/nmeth.3581] [PMID: 26778924]
[8]
Hildebrand, D.G.C.; Cicconet, M.; Torres, R.M.; Choi, W.; Quan, T.M.; Moon, J.; Wetzel, A.W.; Scott Champion, A.; Graham, B.J.; Randlett, O.; Plummer, G.S.; Portugues, R.; Bianco, I.H.; Saalfeld, S.; Baden, A.D.; Lillaney, K.; Burns, R.; Vogelstein, J.T.; Schier, A.F.; Lee, W.A.; Jeong, W.K.; Lichtman, J.W.; Engert, F. Whole-brain serial-section electron microscopy in larval zebrafish. Nature, 2017, 545(7654), 345-349.
[http://dx.doi.org/10.1038/nature22356] [PMID: 28489821]
[9]
Cordero-maldonado, M.L.; Perathoner, S.; Van Der Kolk, K.; Boland, R.; Heins-marroquin, U.; Spaink, H.P.; Meijer, A.H.; Crawford, A.D.; De Sonneville, J.; Nauheim, B. Deep learning image recognition enables efficient genome editing in Zebrafish by automated injections; No; Mlcm, 2018, pp. 1-18.
[10]
Perathoner, S.; Cordero-Maldonado, M.L.; Crawford, A.D. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J. Neurosci. Res., 2016, 94(6), 445-462.
[http://dx.doi.org/10.1002/jnr.23712] [PMID: 26833658]
[11]
Blader, P.; Strähle, U. Zebrafish developmental genetics and central nervous system development. Hum. Mol. Genet., 2000, 9(6), 945-951.
[http://dx.doi.org/10.1093/hmg/9.6.945] [PMID: 10767318]
[12]
Ota, S.; Kawahara, A. Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit. Anom. (Kyoto), 2014, 54(1), 8-11.
[http://dx.doi.org/10.1111/cga.12040] [PMID: 24279334]
[13]
Sakai, C.; Ijaz, S.; Hoffman, E.J. Zebrafish models of neurodevelopmental disorders: Past, present, and future. Front. Mol. Neurosci., 2018, 11, 294.
[http://dx.doi.org/10.3389/fnmol.2018.00294] [PMID: 30210288]
[14]
Fontana, B.D.; Mezzomo, N.J.; Kalueff, A.V.; Rosemberg, D.B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp. Neurol, 2018, 299(Pt A), 157-171.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.004] [PMID: 28987462]
[15]
Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci., 2014, 35(2), 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[16]
Wiley, D.S.; Redfield, S.E.; Zon, L.I. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol., 2017, 138, 651-679.
[http://dx.doi.org/10.1016/bs.mcb.2016.10.004] [PMID: 28129862]
[17]
MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov., 2015, 14(10), 721-731.
[http://dx.doi.org/10.1038/nrd4627] [PMID: 26361349]
[18]
Avey, M.T.; Fenwick, N.; Griffin, G. The use of systematic reviews and reporting guidelines to advance the implementation of the 3Rs. J. Am. Assoc. Lab. Anim. Sci., 2015, 54(2), 153-162.
[PMID: 25836961]
[19]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[20]
Lambert, M.J.; Cochran, W.O.; Wilde, B.M.; Olsen, K.G.; Cooper, C.D. Evidence for widespread subfunctionalization of splice forms in vertebrate genomes. Genome Res., 2015, 25(5), 624-632.
[http://dx.doi.org/10.1101/gr.184473.114] [PMID: 25792610]
[21]
Haffter, P.; Granato, M.; Brand, M.; Mullins, M.C.; Hammerschmidt, M.; Kane, D.A.; Odenthal, J.; van Eeden, F.J.; Jiang, Y.J.; Heisenberg, C.P.; Kelsh, R.N.; Furutani-Seiki, M.; Vogelsang, E.; Beuchle, D.; Schach, U.; Fabian, C.; Nüsslein-Volhard, C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996, 123, 1-36.
[PMID: 9007226]
[22]
Lin, S.; Gaiano, N.; Culp, P.; Burns, J.C.; Friedmann, T.; Yee, J.K.; Hopkins, N. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science, 1994, 265(5172), 666-669.
[http://dx.doi.org/10.1126/science.8036514] [PMID: 8036514]
[23]
Amsterdam, A.; Burgess, S.; Golling, G.; Chen, W.; Sun, Z.; Townsend, K.; Farrington, S.; Haldi, M.; Hopkins, N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev., 1999, 13(20), 2713-2724.
[http://dx.doi.org/10.1101/gad.13.20.2713] [PMID: 10541557]
[24]
Golling, G.; Amsterdam, A.; Sun, Z.; Antonelli, M.; Maldonado, E.; Chen, W.; Burgess, S.; Haldi, M.; Artzt, K.; Farrington, S.; Lin, S.Y.; Nissen, R.M.; Hopkins, N. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet., 2002, 31(2), 135-140.
[http://dx.doi.org/10.1038/ng896] [PMID: 12006978]
[25]
Kawakami, K.; Koga, A.; Hori, H.; Shima, A. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene, 1998, 225(1-2), 17-22.
[http://dx.doi.org/10.1016/S0378-1119(98)00537-X] [PMID: 9931412]
[26]
Davidson, A.E.; Balciunas, D.; Mohn, D.; Shaffer, J.; Hermanson, S.; Sivasubbu, S.; Cliff, M.P.; Hackett, P.B.; Ekker, S.C. Efficient gene delivery and gene expression in zebrafish using the sleeping beauty transposon. Dev. Biol., 2003, 263(2), 191-202.
[http://dx.doi.org/10.1016/j.ydbio.2003.07.013] [PMID: 14597195]
[27]
Emelyanov, A.; Gao, Y.; Naqvi, N.I.; Parinov, S. Trans-kingdom transposition of the maize dissociation element. Genetics, 2006, 174(3), 1095-1104.
[http://dx.doi.org/10.1534/genetics.106.061184] [PMID: 16951067]
[28]
Bergamin, G.; Cieri, D.; Vazza, G.; Argenton, F.; Mostacciuolo, M.L.; Argenton, F. Zebrafish Tg(hb9:MTS-Kaede): a new in vivo tool for studying the axonal movement of mitochondria. Biochim. Biophys. Acta, 2016, 1860(6), 1247-1255.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.007] [PMID: 26968460]
[29]
Ni, J.; Wangensteen, K.J.; Nelsen, D.; Balciunas, D.; Skuster, K.J.; Urban, M.D.; Ekker, S.C. Active recombinant Tol2 transposase for gene transfer and gene discovery applications. Mob. DNA, 2016, 7, 6.
[http://dx.doi.org/10.1186/s13100-016-0062-z] [PMID: 27042235]
[30]
Wheeler, M.A.; Smith, C.J.; Ottolini, M.; Barker, B.S.; Purohit, A.M.; Grippo, R.M.; Gaykema, R.P.; Spano, A.J.; Beenhakker, M.P.; Kucenas, S.; Patel, M.K.; Deppmann, C.D.; Güler, A.D. Genetically targeted magnetic control of the nervous system. Nat. Neurosci., 2016, 19(5), 756-761.
[http://dx.doi.org/10.1038/nn.4265] [PMID: 26950006]
[31]
Doyon, Y.; McCammon, J.M.; Miller, J.C.; Faraji, F.; Ngo, C.; Katibah, G.E.; Amora, R.; Hocking, T.D.; Zhang, L.; Rebar, E.J.; Gregory, P.D.; Urnov, F.D.; Amacher, S.L. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol., 2008, 26(6), 702-708.
[http://dx.doi.org/10.1038/nbt1409] [PMID: 18500334]
[32]
Meng, X.; Noyes, M.B.; Zhu, L.J.; Lawson, N.D.; Wolfe, S.A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol., 2008, 26(6), 695-701.
[http://dx.doi.org/10.1038/nbt1398] [PMID: 18500337]
[33]
Huang, P.; Xiao, A.; Zhou, M.; Zhu, Z.; Lin, S.; Zhang, B. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol., 2011, 29(8), 699-700.
[http://dx.doi.org/10.1038/nbt.1939] [PMID: 21822242]
[34]
Bedell, V.M.; Wang, Y.; Campbell, J.M.; Poshusta, T.L.; Starker, C.G.; Krug, R.G., II; Tan, W.; Penheiter, S.G.; Ma, A.C.; Leung, A.Y.H.; Fahrenkrug, S.C.; Carlson, D.F.; Voytas, D.F.; Clark, K.J.; Essner, J.J.; Ekker, S.C. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422), 114-118.
[http://dx.doi.org/10.1038/nature11537] [PMID: 23000899]
[35]
Kise, R.; Okasato, R.; Kano, K.; Inoue, A.; Kawahara, A.; Aoki, J. Identification and biochemical characterization of a second zebrafish autotaxin gene. J. Biochem., 2019, 165(3), 269-275.
[http://dx.doi.org/10.1093/jb/mvy114] [PMID: 30629186]
[36]
Schultz, L.E.; Haltom, J.A.; Almeida, M.P.; Wierson, W.A.; Solin, S.L.; Weiss, T.J.; Helmer, J.A.; Sandquist, E.J.; Shive, H.R.; McGrail, M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis. Model. Mech., 2018, 11(6) dmm034124
[http://dx.doi.org/10.1242/dmm.034124] [PMID: 29914980]
[37]
Audira, G.; Sarasamma, S.; Chen, J-R.; Juniardi, S.; Sampurna, B.P.; Liang, S-T.; Lai, Y-H.; Lin, G-M.; Hsieh, M-C.; Hsiao, C-D. Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. Int. J. Mol. Sci., 2018, 19(12), 4038.
[http://dx.doi.org/10.3390/ijms19124038] [PMID: 30551684]
[38]
Nasevicius, A.; Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet., 2000, 26(2), 216-220.
[http://dx.doi.org/10.1038/79951] [PMID: 11017081]
[39]
Flynt, A.S.; Rao, M.; Patton, J.G. Blocking Zebrafish MicroRNAs with Morpholinos. Methods Mol. Biol., 2017, 1565, 59-78.
[http://dx.doi.org/10.1007/978-1-4939-6817-6_6] [PMID: 28364234]
[40]
De Rienzo, G.; Gutzman, J.H.; Sive, H. Efficient shRNA-mediated inhibition of gene expression in zebrafish. Zebrafish, 2012, 9(3), 97-107.
[http://dx.doi.org/10.1089/zeb.2012.0770] [PMID: 22788660]
[41]
Dong, Z.; Peng, J.; Guo, S. Stable gene silencing in zebrafish with spatiotemporally targetable RNA interference. Genetics, 2013, 193(4), 1065-1071.
[http://dx.doi.org/10.1534/genetics.112.147892] [PMID: 23378068]
[42]
Andrews, O.E.; Cha, D.J.; Wei, C.; Patton, J.G. RNAi-mediated gene silencing in zebrafish triggered by convergent transcription. Sci. Rep., 2014, 4, 5222.
[http://dx.doi.org/10.1038/srep05222] [PMID: 24909225]
[43]
Marraffini, L.A.; Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 2010, 11(3), 181-190.
[http://dx.doi.org/10.1038/nrg2749] [PMID: 20125085]
[44]
Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Tsai, S.Q.; Sander, J.D.; Peterson, R.T.; Yeh, J-R.J.; Joung, J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(3), 227-229.
[http://dx.doi.org/10.1038/nbt.2501] [PMID: 23360964]
[45]
Jao, L-E.; Wente, S.R.; Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA, 2013, 110(34), 13904-13909.
[http://dx.doi.org/10.1073/pnas.1308335110] [PMID: 23918387]
[46]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337, 6096.
[http://dx.doi.org/10.1126/science.1225829]
[47]
Di Donato, V.; De Santis, F.; Auer, T.O.; Testa, N.; Sánchez-Iranzo, H.; Mercader, N.; Concordet, J-P.; Del Bene, F. 2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Res., 2016, 26(5), 681-692.
[http://dx.doi.org/10.1101/gr.196170.115] [PMID: 26957310]
[48]
Cho, S.W.; Kim, S.; Kim, J.M.; Kim, J-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol., 2013, 31(3), 230-232.
[http://dx.doi.org/10.1038/nbt.2507] [PMID: 23360966]
[49]
Kleinstiver, B.P.; Prew, M.S.; Tsai, S.Q.; Topkar, V.V.; Nguyen, N.T.; Zheng, Z.; Gonzales, A.P.W.; Li, Z.; Peterson, R.T.; Yeh, J-R.J.; Aryee, M.J.; Joung, J.K. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561), 481-485.
[http://dx.doi.org/10.1038/nature14592] [PMID: 26098369]
[50]
Xu, X.; Qi, L.S. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology. J. Mol. Biol., 2019, 431(1), 34-47.
[http://dx.doi.org/10.1016/j.jmb.2018.06.037] [PMID: 29958882]
[51]
Wu, W.; Yang, Y.; Lei, H. Progress in the application of CRISPR: From gene to base editing. Med. Res. Rev., 2019, 39(2), 665-683.
[http://dx.doi.org/10.1002/med.21537] [PMID: 30171624]
[52]
Cai, M.; Han, L.; Liu, L.; He, F.; Chu, W.; Zhang, J.; Tian, Z.; Du, S. Defective Sarcomere Assembly in Smyd1a and Smyd1b Zebrafish Mutants. FASEB J., 2019, fj.201801578R..
[http://dx.doi.org/10.1096/fj.201801578R]
[53]
Varshney, G. K.; Pei, W.; Lafave, M. C.; Idol, J.; Xu, L.; Gallardo, V.; Carrington, B.; Bishop, K.; Jones, M.; Li, M. High-Throughput Gene Targeting and Phenotyping in Zebrafish Using CRISPR / Cas9 2015, 1030-1042.
[http://dx.doi.org/10.1101/gr.186379.114.Freely]
[54]
Liu, D.; Wang, Z.; Xiao, A.; Zhang, Y.; Li, W.; Zu, Y.; Yao, S.; Lin, S.; Zhang, B. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J. Genet. Genomics, 2014, 41(1), 43-46.
[http://dx.doi.org/10.1016/j.jgg.2013.11.004] [PMID: 24480746]
[55]
Shiraki, T.; Kawakami, K. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci. Rep., 2018, 8(1), 13366.
[http://dx.doi.org/10.1038/s41598-018-31476-5] [PMID: 30190522]
[56]
Zhang, Y.; Zhang, Z.; Ge, W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J. Biol. Chem., 2018, 293(17), 6611-6622.
[57]
Prykhozhij, S.V.; Fuller, C.; Steele, S.L.; Veinotte, C.J.; Razaghi, B.; Robitaille, J.M.; McMaster, C.R.; Shlien, A.; Malkin, D.; Berman, J.N. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res., 2018, 46(17)e102
[http://dx.doi.org/10.1093/nar/gky512] [PMID: 29905858]
[58]
Fernandez, J.P.; Vejnar, C.E.; Giraldez, A.J.; Rouet, R.; Moreno-Mateos, M.A. Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods, 2018, 150(March), 11-18.
[http://dx.doi.org/10.1016/j.ymeth.2018.06.014] [PMID: 29964176]
[59]
Labun, K.; Montague, T.G.; Gagnon, J.A.; Thyme, S.B.; Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res., 2016, 44(W1)W272-6
[http://dx.doi.org/10.1093/nar/gkw398] [PMID: 27185894]
[60]
Moreno-Mateos, M.A.; Vejnar, C.E.; Beaudoin, J.D.; Fernandez, J.P.; Mis, E.K.; Khokha, M.K.; Giraldez, A.J. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods, 2015, 12(10), 982-988.
[http://dx.doi.org/10.1038/nmeth.3543] [PMID: 26322839]
[61]
Gagnon, J.A.; Valen, E.; Thyme, S.B.; Huang, P.; Akhmetova, L.; Pauli, A.; Montague, T.G.; Zimmerman, S.; Richter, C.; Schier, A.F. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One, 2014, 9(5)e98186
[http://dx.doi.org/10.1371/journal.pone.0098186] [PMID: 24873830]
[62]
Zhao, Y.; Sun, H.; Sha, X.; Gu, L.; Zhan, Z.; Li, W.; Zhao, Y.; Sun, H.; Sha, X.; Gu, L. A Review of Automated Microinjection of Zebrafish Embryos. Micromachines [Internet], 2018, 10(1), 7.Http://Www.Mdpi.Com/2072-666X/10/1/7ew.
[http://dx.doi.org/10.3390/mi10010007]
[63]
Pei, W.; Burgess, S.M. Microinjection in Zebrafish for Genome Editing and Functional Studies. Methods Mol. Biol., 2019, 1874, 459-474.
[http://dx.doi.org/10.1007/978-1-4939-8831-0_26] [PMID: 30353530]
[64]
D’Agostino, Y.; Locascio, A.; Ristoratore, F.; Sordino, P.; Spagnuolo, A.; Borra, M.; D’Aniello, S. A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening. Mol. Biotechnol., 2015, 58(1), 73-78.
[65]
Foster, S.D.; Glover, S.R.; Turner, A.N.; Chatti, K.; Challa, A.K. A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases. MethodsX, 2018, 6, 1-5.
[http://dx.doi.org/10.1016/j.mex.2018.11.017] [PMID: 30591915]
[66]
Brinkman, E.K.; Chen, T.; Amendola, M.; van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res., 2014, 42(22), e168-e168.
[http://dx.doi.org/10.1093/nar/gku936] [PMID: 25300484]
[67]
Lambert, C.J.; Freshner, B.C.; Chung, A.; Stevenson, T.J.; Bowles, D.M.; Samuel, R.; Gale, B.K.; Bonkowsky, J.L. An automated system for rapid cellular extraction from live zebrafish embryos and larvae: Development and application to genotyping. PLoS One, 2018, 13(3) e0193180
[http://dx.doi.org/10.1371/journal.pone.0193180] [PMID: 29543903]
[68]
Vejnar, C. E.; Moreno-Mateos, M. A.; Cifuentes, D.; Bazzini, A. A.; Giraldez, A. J. Optimized CRISPR-Cas9 system for genome editing in Zebrafish. Cold Spring Harb. Protoc., 2016, 10, pdb.prot086850.
[http://dx.doi.org/10.1101/pdb.prot086850]
[69]
Rafferty, S.A.; Quinn, T.A. A beginner’s guide to understanding and implementing the genetic modification of zebrafish. Prog. Biophys. Mol. Biol., 2018, 138, 3-19.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.07.005] [PMID: 30032905]
[70]
Yang, Z.; Chen, S.; Xue, S.; Li, X.; Sun, Z.; Yang, Y.; Hu, X.; Geng, T.; Cui, H. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model. Biotechnol. Lett., 2018, 40(11-12), 1507-1518.
[http://dx.doi.org/10.1007/s10529-018-2605-5] [PMID: 30244429]
[71]
Li, Jia.; Zhang, Baibing.; Bu, Jiwen. Du, J. Intron-based genomic editing: A highly efficient method for generating knockin zebrafish. Oncotarget, 2015, 6(20), 17891-17894.
[http://dx.doi.org/10.18632/oncotarget.4547]
[72]
Hisano, Y.; Sakuma, T.; Nakade, S.; Ohga, R.; Ota, S.; Okamoto, H.; Yamamoto, T.; Kawahara, A. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep., 2015, 5, 8841.
[http://dx.doi.org/10.1038/srep08841] [PMID: 25740433]
[73]
Simone, B.W.; Martínez-Gálvez, G. WareJoncas, Z.; Ekker, S.C. Fishing for understanding: Unlocking the zebrafish gene editor’s toolbox. Methods, 2018, 150(July), 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2018.07.012] [PMID: 30076892]
[74]
Albadri, S.; Del Bene, F.; Revenu, C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods, 2017, 121-122, 77-85.
[http://dx.doi.org/10.1016/j.ymeth.2017.03.005] [PMID: 28300641]
[75]
Kok, F.O.; Shin, M.; Ni, C-W.; Gupta, A.; Grosse, A.S.; van Impel, A.; Kirchmaier, B.C.; Peterson-Maduro, J.; Kourkoulis, G.; Male, I.; DeSantis, D.F.; Sheppard-Tindell, S.; Ebarasi, L.; Betsholtz, C.; Schulte-Merker, S.; Wolfe, S.A.; Lawson, N.D. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell, 2015, 32(1), 97-108.
[http://dx.doi.org/10.1016/j.devcel.2014.11.018] [PMID: 25533206]
[76]
Lebedeva, S.; de Jesus Domingues, A.M.; Butter, F.; Ketting, R.F. Characterization of genetic loss-of-function of Fus in zebrafish. RNA Biol., 2017, 14(1), 29-35.
[http://dx.doi.org/10.1080/15476286.2016.1256532] [PMID: 27898262]
[77]
Stainier, D.Y.R.; Raz, E.; Lawson, N.D.; Ekker, S.C.; Burdine, R.D.; Eisen, J.S.; Ingham, P.W.; Schulte-Merker, S.; Yelon, D.; Weinstein, B.M.; Mullins, M.C.; Wilson, S.W.; Ramakrishnan, L.; Amacher, S.L.; Neuhauss, S.C.F.; Meng, A.; Mochizuki, N.; Panula, P.; Moens, C.B. Guidelines for morpholino use in zebrafish. PLoS Genet., 2017, 13(10) e1007000
[http://dx.doi.org/10.1371/journal.pgen.1007000] [PMID: 29049395]
[78]
Lawson, N.D. Reverse genetics in Zebrafish: Mutants, morphants, and moving forward. Trends Cell Biol., 2016, 26(2), 77-79.
[http://dx.doi.org/10.1016/j.tcb.2015.11.005] [PMID: 26739910]
[79]
Burns, D.T.; Donkervoort, S.; Müller, J.S.; Knierim, E.; Bharucha-Goebel, D.; Faqeih, E.A.; Bell, S.K.; AlFaifi, A.Y.; Monies, D.; Millan, F.; Retterer, K.; Dyack, S.; MacKay, S.; Morales-Gonzalez, S.; Giunta, M.; Munro, B.; Hudson, G.; Scavina, M.; Baker, L.; Massini, T.C.; Lek, M.; Hu, Y.; Ezzo, D.; AlKuraya, F.S.; Kang, P.B.; Griffin, H.; Foley, A.R.; Schuelke, M.; Horvath, R.; Bönnemann, C.G. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am. J. Hum. Genet., 2018, 102(5), 858-873.
[http://dx.doi.org/10.1016/j.ajhg.2018.03.011] [PMID: 29727687]
[80]
Zimmer, A.M.; Pan, Y.K.; Chandrapalan, T.; Kwong, R.W.M.; Perry, S.F. Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing? J. Exp. Biol., 2019, 222(Pt 7) jeb175737
[http://dx.doi.org/10.1242/jeb.175737] [PMID: 30948498]
[81]
El-Brolosy, M.A.; Stainier, D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet., 2017, 13(7) e1006780
[http://dx.doi.org/10.1371/journal.pgen.1006780] [PMID: 28704371]
[82]
Pena, I.A.; Roussel, Y.; Daniel, K.; Mongeon, K.; Johnstone, D.; Mendes, H.W.; Bosma, M.; Saxena, V.; Lepage, N.; Chakraborty, P. Pyridoxine-dependent epilepsy in zebrafish caused by Aldh7a1 deficiency. Genetics, 2017, 207(4), 1501-1518.
[http://dx.doi.org/10.1534/genetics.117.300137]
[83]
Xu, M.; Liu, D.; Dong, Z.; Wang, X.; Wang, X.; Liu, Y.; Baas, P.W.; Liu, M. Kinesin-12 influences axonal growth during zebrafish neural development. Cytoskeleton (Hoboken), 2014, 71(10), 555-563.
[http://dx.doi.org/10.1002/cm.21193] [PMID: 25250533]
[84]
Dong, Z.; Wu, S.; Zhu, C.; Wang, X.; Li, Y.; Chen, X.; Liu, D.; Qiang, L.; Baas, P.W.; Liu, M. CRISPR/Cas9-mediated Kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in zebrafish. Traffic, 2019, 20(1), 71-81.
[http://dx.doi.org/10.1111/tra.12621] [PMID: 30411440]
[85]
Gurung, S.; Asante, E.; Hummel, D.; Williams, A.; Feldman-Schultz, O.; Halloran, M.C.; Sittaramane, V.; Chandrasekhar, A. Distinct roles for the cell adhesion molecule contactin2 in the development and function of neural circuits in zebrafish. Mech. Dev., 2018, 152, 1-12.
[http://dx.doi.org/10.1016/j.mod.2018.05.005] [PMID: 29777776]
[86]
Bose, P.; Armstrong, G.A.B.; Drapeau, P. Neuromuscular junctions abnormalities in a zebrafish loss-of-function model TDP-43. J. Neurophysiol., 2019, 121(1), 285-297.
[87]
Volk, A.E.; Weishaupt, J.H.; Andersen, P.M.; Ludolph, A.C.; Kubisch, C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Medizinische. Gene, 2018, 30(2), 252-258.
[http://dx.doi.org/10.1007/s11825-018-0185-3]
[88]
Turner, A.N.; Andersen, R.S.; Bookout, I.E.; Brashear, L.N.; Davis, J.C.; Gahan, D.M.; Davis, J.C.; Gotham, J.P.; Hijaz, B.A.; Kaushik, A.S.; Mcgill, J.B.; Miller, V.L.; Moseley, Z.P.; Nowell, C.L.; Patel, R.K.; Rodgers, M.C.; Patel, R.K.; Shihab, Y.A.; Walker, A.P.; Glover, S.R.; Foster, S.D.; Challa, A.K. Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs. J. Genet., 2018, 97(5), 1315-1325.
[http://dx.doi.org/10.1007/s12041-018-1033-6] [PMID: 30555080]
[89]
Jardin, N.; Giudicelli, F.; Ten Martín, D.; Vitrac, A.; De Gois, S.; Allison, R.; Houart, C.; Reid, E.; Hazan, J.; Fassier, C. BMP- and neuropilin 1-mediated motor axon navigation relies on spastin alternative translation. Development, 2018, 145(17) dev162701
[http://dx.doi.org/10.1242/dev.162701] [PMID: 30082270]
[90]
Kozol, R.A.; Cukier, H.N.; Zou, B.; Mayo, V.; De Rubeis, S.; Cai, G.; Griswold, A.J.; Whitehead, P.L.; Haines, J.L.; Gilbert, J.R.; Cuccaro, M.L.; Martin, E.R.; Baker, J.D.; Buxbaum, J.D.; Pericak-Vance, M.A.; Dallman, J.E. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum. Mol. Genet., 2015, 24(14), 4006-4023.
[http://dx.doi.org/10.1093/hmg/ddv138] [PMID: 25882707]
[91]
Liu, C.X.; Li, C.Y.; Hu, C.C.; Wang, Y.; Lin, J.; Jiang, Y.H.; Li, Q.; Xu, X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism, 2018, 9(1), 23.
[http://dx.doi.org/10.1186/s13229-018-0204-x] [PMID: 29619162]
[92]
Riché, R.; Drapeau, P.; Samarut, É. Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level. JCI Insight, 2018, 3(21) 124642
[http://dx.doi.org/10.1172/jci.insight.124642]
[93]
Khan, T.N.; Khan, K.; Sadeghpour, A.; Reynolds, H.; Perilla, Y.; McDonald, M.T.; Gallentine, W.B.; Baig, S.M.; Davis, E.E.; Katsanis, N. Mutations in NCAPG2 cause a severe neurodevelopmental syndrome that expands the phenotypic spectrum of sondensinopathies. Am. J. Hum. Genet., 2019, 104(1), 94-111.
[http://dx.doi.org/10.1016/j.ajhg.2018.11.017] [PMID: 30609410]
[94]
Zelinka, C.P.; Sotolongo-Lopez, M.; Fadool, J.M. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod photoreceptor degeneration. Mol. Vis., 2018, 24, 587-602.
[PMID: 30210230]
[95]
Grone, B.P.; Marchese, M.; Hamling, K.R.; Kumar, M.G.; Krasniak, C.S.; Sicca, F.; Santorelli, F.M.; Patel, M.; Baraban, S.C. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish. PLoS One, 2016, 11(3) e0151148
[http://dx.doi.org/10.1371/journal.pone.0151148] [PMID: 26963117]
[96]
Zabinyakov, N.; Bullivant, G.; Cao, F.; Fernandez Ojeda, M.; Jia, Z.P.; Wen, X.Y.; Dowling, J.J.; Salomons, G.S.; Mercimek-Andrews, S. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology. PLoS One, 2017, 12(10) e0186645
[http://dx.doi.org/10.1371/journal.pone.0186645] [PMID: 29053735]
[97]
Johnstone, D.L.; Al-Shekaili, H.H.; Tarailo-Graovac, M.; Wolf, N.I.; Ivy, A.S.; Demarest, S.; Roussel, Y.; Ciapaite, J.; van Roermund, C.W.T.; Kernohan, K.D.; Kosuta, C.; Ban, K.; Ito, Y.; McBride, S.; Al-Thihli, K.; Abdelrahim, R.A.; Koul, R.; Al Futaisi, A.; Haaxma, C.A.; Olson, H.; Sigurdardottir, L.Y.; Arnold, G.L.; Gerkes, E.H.; Boon, M.; Heiner-Fokkema, M.R.; Noble, S.; Bosma, M.; Jans, J.; Koolen, D.A.; Kamsteeg, E.J.; Drögemöller, B.; Ross, C.J.; Majewski, J.; Cho, M.T.; Begtrup, A.; Wasserman, W.W.; Bui, T.; Brimble, E.; Violante, S.; Houten, S.M.; Wevers, R.A.; van Faassen, M.; Kema, I.P.; Lepage, N.; Lines, M.A.; Dyment, D.A.; Wanders, R.J.A.; Verhoeven-Duif, N.; Ekker, M.; Boycott, K.M.; Friedman, J.M.; Pena, I.A.; van Karnebeek, C.D.M. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain, 2019, 142(3), 542-559.
[http://dx.doi.org/10.1093/brain/awy346] [PMID: 30668673]
[98]
Weaver, C.J.; Terzi, A.; Roeder, H.; Gurol, T.; Deng, Q.; Leung, Y.F.; Suter, D.M. nox2/cybb deficiency affects Zebrafish retinotectal connectivity. J. Neurosci., 2018, 38(26), 5854-5871.
[http://dx.doi.org/10.1523/JNEUROSCI.1483-16.2018] [PMID: 29793976]
[99]
Sedykh, I.; Keller, A.N.; Yoon, B.; Roberson, L.; Moskvin, O.V.; Grinblat, Y. Zebrafish Rfx4 controls dorsal and ventral midline formation in the neural tube. Dev. Dyn., 2018, 247(4), 650-659.
[http://dx.doi.org/10.1002/dvdy.24613] [PMID: 29243319]
[100]
Yildiz, O.; Downes, G. B.; Sagerström, C. G. Zebrafish Prdm12b acts independently of Nkx6 . 1 repression to promote Eng1b Expression in the neural tube P1 domain 2019, 1-19.
[101]
Hofmeister, W.; Pettersson, M.; Kurtoglu, D.; Armenio, M.; Eisfeldt, J.; Papadogiannakis, N.; Gustavsson, P.; Lindstrand, A. Targeted copy number screening highlights an intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Hum. Mutat., 2018, 39(4), 495-505.
[http://dx.doi.org/10.1002/humu.23388] [PMID: 29285825]
[102]
Perez, Y.; Bar-Yaacov, R.; Kadir, R.; Wormser, O.; Shelef, I.; Birk, O.S.; Flusser, H.; Birnbaum, R.Y. Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain, 2019, 142(3), 574-585.
[http://dx.doi.org/10.1093/brain/awz004] [PMID: 30715179]
[103]
Cai, S.; Chen, Y.; Shang, Y.; Cui, J.; Li, Z.; Li, Y. Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment. Cell Death Dis., 2018, 9(3), 273.
[http://dx.doi.org/10.1038/s41419-018-0337-z] [PMID: 29449560]
[104]
Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Shirai, Y.; Chen, Y.C.; Panula, P. Knockout of histamine receptor H3 alters adaptation to sudden darkness and monoamine levels in the zebrafish. Acta Physiol. (Oxf.), 2018, 222(3)
[http://dx.doi.org/10.1111/apha.12981] [PMID: 29044927]
[105]
Ashlin, T.G.; Blunsom, N.J.; Ghosh, M.; Cockcroft, S.; Rihel, J. Pitpnc1a regulates Zebrafish sleep and wake behavior through modulation of insulin-like growth factor signaling. Cell Rep., 2018, 24(6), 1389-1396.
[http://dx.doi.org/10.1016/j.celrep.2018.07.012] [PMID: 30089250]
[106]
Küry, S.; Besnard, T.; Ebstein, F.; Khan, T.N.; Gambin, T.; Douglas, J.; Bacino, C.A.; Craigen, W.J.; Sanders, S.J.; Lehmann, A.; Latypova, X.; Khan, K.; Pacault, M.; Sacharow, S.; Glaser, K.; Bieth, E.; Perrin-Sabourin, L.; Jacquemont, M.L.; Cho, M.T.; Roeder, E.; Denommé-Pichon, A.S.; Monaghan, K.G.; Yuan, B.; Xia, F.; Simon, S.; Bonneau, D.; Parent, P.; Gilbert-Dussardier, B.; Odent, S.; Toutain, A.; Pasquier, L.; Barbouth, D.; Shaw, C.A.; Patel, A.; Smith, J.L.; Bi, W.; Schmitt, S.; Deb, W.; Nizon, M.; Mercier, S.; Vincent, M.; Rooryck, C.; Malan, V.; Briceño, I.; Gómez, A.; Nugent, K.M.; Gibson, J.B.; Cogné, B.; Lupski, J.R.; Stessman, H.A.F.; Eichler, E.E.; Retterer, K.; Yang, Y.; Redon, R.; Katsanis, N.; Rosenfeld, J.A.; Kloetzel, P.M.; Golzio, C.; Bézieau, S.; Stankiewicz, P.; Isidor, B. De Novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental Disorder. Am. J. Hum. Genet., 2017, 100(2), 352-363.
[http://dx.doi.org/10.1016/j.ajhg.2017.01.003] [PMID: 28132691]
[107]
Du, W.J.; Zhang, R.W.; Li, J.; Zhang, B.B.; Peng, X.L.; Cao, S.; Yuan, J.; Yuan, C.D.; Yu, T.; Du, J.L. The locus coeruleus modulates intravenous general anesthesia of Zebrafish via a cooperative mechanism. Cell Rep., 2018, 24(12), 3146-3155.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.08.046] [PMID: 30231998]
[108]
Zhang, H.; Zhang, Q.; Gao, G.; Wang, X.; Wang, T.; Kong, Z.; Wang, G.; Zhang, C.; Wang, Y.; Peng, G. UBTOR/KIAA1024 regulates neurite outgrowth and neoplasia through mTOR signaling. PLoS Genet., 2018, 14(8)e1007583
[http://dx.doi.org/10.1371/journal.pgen.1007583] [PMID: 30080879]
[109]
Bar Yaacov, R.; Eshel, R.; Farhi, E.; Shemuluvich, F.; Kaplan, T.; Birnbaum, R.Y. Functional Characterization of the ZEB2 Regulatory Landscape. Hum. Mol. Genet., 2019, 28(9), 1487-1497.
[110]
Lazcano, I.; Rodríguez-Ortiz, R.; Villalobos, P.; Martínez-Torres, A.; Solís-Saínz, J.C.; Orozco, A. Knock-down of specific thyroid hormone receptor Isoforms impairs body plan development in Zebrafish. Front. Endocrinol., (Lausanne), 2019, 10, 156.
[http://dx.doi.org/10.3389/fendo.2019.00156] [PMID: 30930855]
[111]
Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Shirai, Y. Chen, Kuil, L.E.; Oosterhof, N.; Geurts, S.N.; van der Linde, H.C.; Meijering, E.; van Ham, T.J. Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. Dis. Model. Mech., 2019, 12(3) pii: dmm037762
[http://dx.doi.org/10.1242/dmm.037762] [PMID: 30765415]
[112]
Jobst-Schwan, T.; Schmidt, J.M.; Schneider, R.; Hoogstraten, C.A.; Ullmann, J.F.P.; Schapiro, D.; Majmundar, A.J.; Kolb, A.; Eddy, K.; Shril, S.; Braun, D.A.; Poduri, A.; Hildebrandt, F. Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model. PLoS One, 2018, 13(1) e0191503
[http://dx.doi.org/10.1371/journal.pone.0191503] [PMID: 29346415]
[113]
Braun, D.A.; Rao, J.; Mollet, G.; Schapiro, D.; Daugeron, M-C.; Tan, W.; Gribouval, O.; Boyer, O.; Revy, P.; Jobst-Schwan, T.; Schmidt, J.M.; Lawson, J.A.; Schanze, D.; Ashraf, S.; Ullmann, J.F.P.; Hoogstraten, C.A.; Boddaert, N.; Collinet, B.; Martin, G.; Liger, D.; Lovric, S.; Furlano, M.; Guerrera, I.C.; Sanchez-Ferras, O.; Hu, J.F.; Boschat, A.C.; Sanquer, S.; Menten, B.; Vergult, S.; De Rocker, N.; Airik, M.; Hermle, T.; Shril, S.; Widmeier, E.; Gee, H.Y.; Choi, W.I.; Sadowski, C.E.; Pabst, W.L.; Warejko, J.K.; Daga, A.; Basta, T.; Matejas, V.; Scharmann, K.; Kienast, S.D.; Behnam, B.; Beeson, B.; Begtrup, A.; Bruce, M.; Ch’ng, G.S.; Lin, S.P.; Chang, J.H.; Chen, C.H.; Cho, M.T.; Gaffney, P.M.; Gipson, P.E.; Hsu, C.H.; Kari, J.A.; Ke, Y.Y.; Kiraly-Borri, C.; Lai, W.M.; Lemyre, E.; Littlejohn, R.O.; Masri, A.; Moghtaderi, M.; Nakamura, K.; Ozaltin, F.; Praet, M.; Prasad, C.; Prytula, A.; Roeder, E.R.; Rump, P.; Schnur, R.E.; Shiihara, T.; Sinha, M.D.; Soliman, N.A.; Soulami, K.; Sweetser, D.A.; Tsai, W.H.; Tsai, J.D.; Topaloglu, R.; Vester, U.; Viskochil, D.H.; Vatanavicharn, N.; Waxler, J.L.; Wierenga, K.J.; Wolf, M.T.F.; Wong, S.N.; Leidel, S.A.; Truglio, G.; Dedon, P.C.; Poduri, A.; Mane, S.; Lifton, R.P.; Bouchard, M.; Kannu, P.; Chitayat, D.; Magen, D.; Callewaert, B.; van Tilbeurgh, H.; Zenker, M.; Antignac, C.; Hildebrandt, F. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat. Genet., 2017, 49(10), 1529-1538.
[http://dx.doi.org/10.1038/ng.3933] [PMID: 28805828]
[114]
Kimura, Y.; Hisano, Y.; Kawahara, A.; Higashijima, S. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci. Rep., 2014, 4, 6545.
[http://dx.doi.org/10.1038/srep06545] [PMID: 25293390]
[115]
Ota, S.; Taimatsu, K.; Yanagi, K.; Namiki, T.; Ohga, R.; Higashijima, S.I.; Kawahara, A.; Jinek, M.; Cong, L.; Mali, P. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci. Rep., 2016, 6, 34991.
[http://dx.doi.org/10.1038/srep34991] [PMID: 27725766]
[116]
Wu, R.S.; Lam, I.I.; Clay, H.; Duong, D.N.; Deo, R.C.; Coughlin, S.R. A rapid method for directed gene knockout for screening in G0 Zebrafish. Dev. Cell, 2018, 46(1), 112-125.e4.
[http://dx.doi.org/10.1016/j.devcel.2018.06.003] [PMID: 29974860]
[117]
Chen, T.W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; Looger, L.L.; Svoboda, K.; Kim, D.S. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 2013, 499(7458), 295-300.
[http://dx.doi.org/10.1038/nature12354] [PMID: 23868258]
[118]
Ahrens, M.B.; Orger, M.B.; Robson, D.N.; Li, J.M.; Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods, 2013, 10(5), 413-420.
[http://dx.doi.org/10.1038/nmeth.2434] [PMID: 23524393]
[119]
Farrar, M.J.; Kolkman, K.E.; Fetcho, J.R. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. J. Comp. Neurol., 2018, 526(15), 2493-2508.
[http://dx.doi.org/10.1002/cne.24508] [PMID: 30070695]
[120]
Motta-Mena, L.B.; Reade, A.; Mallory, M.J.; Glantz, S.; Weiner, O.D.; Lynch, K.W.; Gardner, K.H. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol., 2014, 10(3), 196-202.
[http://dx.doi.org/10.1038/nchembio.1430] [PMID: 24413462]
[121]
Buckley, C.E.; Moore, R.E.; Reade, A.; Goldberg, A.R.; Weiner, O.D.; Clarke, J.D.W. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell, 2016, 36(1), 117-126.
[http://dx.doi.org/10.1016/j.devcel.2015.12.011] [PMID: 26766447]
[122]
Reade, A.; Motta-Mena, L.B.; Gardner, K.H.; Stainier, D.Y.; Weiner, O.D.; Woo, S. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development, 2017, 144(2), 345-355.
[http://dx.doi.org/10.1242/dev.139238] [PMID: 27993986]
[123]
Putri, R.R.; Chen, L. Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system. Gene, 2018, 677(July), 273-279.
[http://dx.doi.org/10.1016/j.gene.2018.07.077] [PMID: 30077009]
[124]
Nihongaki, Y.; Yamamoto, S.; Kawano, F.; Suzuki, H.; Sato, M. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol., 2015, 22(2), 169-174.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.011] [PMID: 25619936]
[125]
Yang, H.H.; St-Pierre, F. Genetically Encoded Voltage Indicators: Opportunities and Challenges. J. Neurosci., 2016, 36(39), 9977-9989.
[http://dx.doi.org/10.1523/JNEUROSCI.1095-16.2016] [PMID: 27683896]
[126]
Kibat, C.; Krishnan, S.; Ramaswamy, M.; Baker, B.J.; Jesuthasan, S. Imaging voltage in zebrafish as a route to characterizing a vertebrate functional connectome: promises and pitfalls of genetically encoded indicators. J. Neurogenet., 2016, 30(2), 80-88.
[http://dx.doi.org/10.1080/01677063.2016.1180384] [PMID: 27328843]
[127]
Benedetti, L.; Ghilardi, A.; Prosperi, L.; Francolini, M.; Del Giacco, L. Biosensing motor neuron membrane potential in live zebrafish embryos. J. Vis. Exp., 2017, 124, 1-8.
[128]
Miyazawa, H.; Okumura, K.; Hiyoshi, K.; Maruyama, K.; Kakinuma, H.; Amo, R.; Okamoto, H.; Yamasu, K.; Tsuda, S. Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators. Sci. Rep., 2018, 8(1), 6048.
[http://dx.doi.org/10.1038/s41598-018-23906-1] [PMID: 29662090]
[129]
Breacker, C.; Barber, I.; Norton, W.H.J.; McDearmid, J.R.; Tilley, C.A. A Low-Cost Method of Skin Swabbing for the Collection of DNA Samples from Small Laboratory Fish. Zebrafish, 2017, 14(1), 35-41.
[http://dx.doi.org/10.1089/zeb.2016.1348] [PMID: 27788059]
[130]
Borck, G.; Hög, F.; Dentici, M.L.; Tan, P.L.; Sowada, N.; Medeira, A.; Gueneau, L.; Thiele, H.; Kousi, M.; Lepri, F.; Wenzeck, L.; Blumenthal, I.; Radicioni, A.; Schwarzenberg, T.L.; Mandriani, B.; Fischetto, R.; Morris-Rosendahl, D.J.; Altmüller, J.; Reymond, A.; Nürnberg, P.; Merla, G.; Dallapiccola, B.; Katsanis, N.; Cramer, P.; Kubisch, C. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res., 2015, 25(2), 155-166.
[http://dx.doi.org/10.1101/gr.176925.114] [PMID: 25561519]
[131]
Hofmeister, W.; Pettersson, M.; Kurtoglu, D.; Armenio, M.; Eisfeldt, J.; Papadogiannakis, N.; Gustavsson, P.; Lindstrand, A. Targeted copy number screening highlights an intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Hum. Mutat., 2018, 39(4), 495-505.
[http://dx.doi.org/10.1002/humu.23388] [PMID: 29285825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy